Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 238(Pt 1): 117125, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709245

RESUMO

Microalgal strain improvement with commercial features is needed to generate green biological feedstock to produce lipids for bioenergy. Hence, improving algal strain with enhanced lipid content without hindering cellular physiological parameters is pivotal for commercial applications of microalgae. In this report, we demonstrated the adaptive laboratory evolution (ALE) by hypersaline conditions to improve the algal strains for increasing the lipid overproduction capacity of Chlorella vulgaris for environmental applications. The evolved strains (namely E2 and E2.5) without notable impairment in general physiological parameters were scrutinized after 35 cycles. Conventional gravimetric lipid analysis showed that total lipid accumulation was hiked by 2.2-fold in the ALE strains compared to the parental strains. Confocal observation of algal cells stained with Nile-red showed that the abundance of lipid droplets was higher in the evolved strains without any apparent morphological aberrations. Furthermore, evolved strains displayed notable antioxidant potential than the control cells. Interestingly, carbohydrates and protein content were significantly decreased in the evolved cells, indicating that carbon flux was redirected into lipogenesis in the evolved cells. Altogether, our findings demonstrated a potential and feasible strategy for microalgal strain improvement for simultaneous lipids and biomass hyperaccumulation.


Assuntos
Chlorella vulgaris , Microalgas , Chlorella vulgaris/metabolismo , Lipídeos , Biomassa , Antioxidantes/metabolismo , Biocombustíveis
2.
J Agric Food Chem ; 71(26): 10065-10074, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37342893

RESUMO

Burgeoning commercial applications of catechol have led to its excessive accumulation in the environment, thereby posing a severe ecological threat. Bioremediation has emerged as a promising solution. The potential of the microalga Crypthecodinium cohnii to degrade catechol and use the byproduct as a carbon source was investigated in this study. Catechol significantly increased C. cohnii growth and was rapidly catabolized within 60 h of cultivation. Transcriptomic analysis highlighted the key genes involved in catechol degradation. Real-time polymerase chain reaction (RT-PCR) analysis showed that transcription of key genes CatA, CatB, and SaID involved in the ortho-cleavage pathway was remarkably increased by 2.9-, 4.2-, and 2.4- fold, respectively. Key primary metabolite content was also markedly altered, with a specific increment in polyunsaturated fatty acids. Electron microscopy and antioxidant analysis showed that C. cohnii could tolerate catechol treatment without morphological aberrations or oxidative stress. The findings provide a strategy for C. cohnii in the bioremediation of catechol and concurrent polyunsaturated fatty acids (PUFA) accumulation.


Assuntos
Dinoflagellida , Microalgas , Ácidos Docosa-Hexaenoicos/metabolismo , Microalgas/genética , Microalgas/metabolismo , Biodegradação Ambiental , Catecóis/metabolismo , Dinoflagellida/metabolismo
3.
J Agric Food Chem ; 70(15): 4677-4689, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384649

RESUMO

The unicellular freshwater green alga Haematococcus pluvialis has attracted much research attention due to its biosynthetic ability for large amounts of astaxanthin, a blood-red ketocarotenoid that is used in cosmetics, nutraceuticals, and pharmaceuticals. Recently, numerous studies have investigated the functions of natural astaxanthin; however, the high cost of the production of astaxanthin from H. pluvialis cultures restricts its commercial viability. There is an urgent need to fulfill commercial demands by increasing astaxanthin accumulation from H. pluvialis cultures. In this study, we discovered that treatment of H. pluvialis cultures at the beginning of the macrozooid stage (day 0) with 1 µM rac-GR24, a synthetic analogue of strigolactones (a class of phytohormones), led to significant increases in biomass [up to a maximum dry cell weight (DCW) of 0.53 g/L] during the macrozooid stage and astaxanthin (from 0.63 to 5.32% of DCW) during the hematocyst stage. We elucidated that this enhancement of biomass accumulation during the macrozooid stage by rac-GR24 is due to its increasing CO2 utilization efficiency in photosynthesis and carbohydrate biosynthesis. We also found that rac-GR24 stimulated the overproduction of nicotinamide adenine dinucleotide phosphate (NADPH) and antioxidant enzymes in H. pluvialis cultures, which alleviated the oxidative damage caused by reactive oxygen species generated during the hematocyst stage due to the exhaustion of nitrogen supplies. Moreover, rac-GR24 treatment of H. pluvialis synergistically altered the activity of the pathways of fatty acid biosynthesis and astaxanthin esterification, which resulted in larger amounts of astaxanthin being generated by rac-GR24-treated cultures than by controls. In summary, we have developed a feasible and economic rac-GR24-assisted strategy that increases the amounts of biomass and astaxanthin generated by H. pluvialis cultures, and have provided novel insights into the mechanistic roles of rac-GR24 to achieve these effects.


Assuntos
Clorofíceas , Biomassa , Suplementos Nutricionais , Xantofilas
4.
J Hazard Mater ; 426: 127820, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865896

RESUMO

Tobacco wastewater is too difficult to decontaminate which poses a significant environmental problem due to the harmful and toxic components. Chlorella pyrenoidosa is a typical microalgal species with potential in removal of organic/inorganic pollutants and proves to be an ideal algal-based system for wastewater treatment. However, the strategy of tobacco related wastewater treatment using microalgae is in urgent need of development. In this study, C. pyrenoidosa was used to evaluate the removal efficiency of artificial tobacco wastewater. Under various solid-to-liquid (g/L) ratios, 1:1 ratio and acidic pH 5.0 were optimal for C. pyrenoidosa to grow with high performance of removal capacity to toxic pollutants (such as COD, NH3-N, nicotine, nitrosamines and heavy metals) with the alleviation of oxidative damage. Algal biomass could reach up to 540.24 mg/L. Furthermore, carbon flux of C. pyrenoidosa was reallocated from carbohydrate and protein biosynthesis to lipogenesis with a high lipid content of 268.60 mg/L at pH 5.0. Overall, this study demonstrates an efficient and sustainable strategy for tobacco wastewater treatment at acidic pH with the production of valuable microalgal products, which provides a promising biorefinery strategy for microalgal-based wastewater bioremediation.


Assuntos
Chlorella , Microalgas , Biodegradação Ambiental , Biomassa , Concentração de Íons de Hidrogênio , Lipídeos , Nicotiana , Águas Residuárias
5.
Appl Microbiol Biotechnol ; 105(23): 8783-8793, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34741642

RESUMO

The established human health benefits of carotenoids along with the contemporary consumption of natural carotenoids bring the necessity to sustainable production of carotenoids. Among, marine diatoms have emerged as the potential biological resources for carotenoid production; however, their relatively lower yield in native strains provides the impetus to genetically improve the diatoms to cope with the burgeoning demand. In this study, we genetically improved the diatom Phaeodactylum tricornutum by overexpressing key carotenogenic genes involved in methylerythritol phosphate (MEP) pathway. The genes with lower relative transcript level under optimum conditions such as CMK and CMS were selected and overexpressed in P. tricornutum individually. Both CMK and CMS overexpressing lines exhibited elevated growth and photosynthesis. The expression of key carotenogenic genes such as PSY, PDS, ZDS, CRT, and LCYB was significantly upregulated. Furthermore, total carotenoid content was significantly increased; particularly, fucoxanthin content was increased by 1.83- and 1.82-fold in engineered lines CMK and CMS, respectively. Together, the results identify the potential metabolic targets and also uncover the crucial role of MEP pathway in redirecting metabolic precursors towards carotenogenesis. KEY POINTS: • Low abundant genes CMS and CMK of MEP pathway were overexpressed in the diatom • Total carotenoid content was increased, particularly fucoxanthin • Critical metabolic nodes were uncovered to accelerate fucoxanthin biosynthesis.


Assuntos
Diatomáceas , Carotenoides , Diatomáceas/genética , Humanos , Fosfatos , Xantofilas
6.
J Exp Bot ; 72(8): 2918-2932, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491071

RESUMO

Phosphorus (P) limitation affects phytoplankton growth and population size in aquatic systems, and consequently limits aquatic primary productivity. Plants have evolved a range of metabolic responses to cope with P limitation, such as accumulation of purple acid phosphatases (PAPs) to enhance acquisition of phosphates. However, it remains unknown whether algae have evolved a similar mechanism. In this study, we examined the role of PAPs in the model microalga Phaeodactylum tricornutum. Expression of PAP1 was enhanced in P. tricornutum cells grown on organophosphorus compared to inorganic phosphate. PAP1 overexpression improved cellular growth and biochemical composition in a growth-phase dependent manner. PAP1 promoted growth and photosynthesis during growth phases and reallocated carbon flux towards lipogenesis during the stationary phase. PAP1 was found to be localized in the endoplasmic reticulum and it orchestrated the expression of genes involved in key metabolic pathways and translocation of inorganic P (Pi), thereby improving energy use, reducing equivalents and antioxidant potential. RNAi of PAP1 induced expression of its homolog PAP2, thereby compensating for the Pi scavenging activity of PAP1. Our results demonstrate that PAP1 brings about sequential regulation of metabolism, and provide novel insights into algal phosphorus metabolism and aquatic primary productivity.


Assuntos
Diatomáceas , Fosfatase Ácida/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Hidrólise , Fósforo , Fotossíntese
7.
Bioresour Technol ; 320(Pt B): 124391, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33220546

RESUMO

Molybdenum disulfide nanoparticles (MoS2 NPs) hold tremendous properties in wide domain of applications. In this study, the impact of MoS2 NPs was investigated on algal physiological and metabolic properties and a two-stage strategy was acquired to enhance the commercial potential of Dunaliella salina. With 50 µg/L of MoS2 NPs exposure, cellular growth and biomass production were promoted by 1.47- and 1.33-fold than that in control, respectively. MoS2 NPs treated cells were subject to high light intensity for 7 days after 30 days of normal light cultivation, which showed that high light intensity gradually increased ß-carotene content by 1.48-fold. Furthermore, analyses of primary metabolites showed that combinatorial approach significantly altered the biochemical composition of D. salina. Together, these findings demonstrated that MoS2 NPs at an optimum concentration combined with high light intensity could be a promising approach to concurrently enhance biomass and ß-carotene production in microalgae.


Assuntos
Nanopartículas , beta Caroteno , Biomassa , Dissulfetos , Molibdênio
8.
J Hazard Mater ; 404(Pt B): 124014, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069998

RESUMO

Molybdenum disulfide nanoparticles (MoS2 NPs) has emerged as the promising nanomaterial with a wide array of applications in the biomedical, industrial and environmental field. However, the potential effect of MoS2 NPs on marine organisms has yet to be reported. In this study, the effect of MoS2 NPs on the physiological index, subcellular morphology, transcriptomic profiles of the marine microalgae Dunaliella salina was investigated for the first time. exhibited "doping-like" effects on marine microalgae; Growth stimulation was 193.55%, and chlorophyll content increased 1.61-fold upon the addition of 50 µg/L MoS2 NPs. Additionally, exposure to MoS2 NPs significantly increased the protein and carbohydrate content by 2.03- and 1.56-fold, respectively. The antioxidant system was activated as well to eliminate the adverse influence of reactive oxygen species (ROS). Transcriptomic analysis revealed that genes involved in porphyrin synthesis, glycolysis/gluconeogenesis, tricarboxylic acid cycle and DNA replication were upregulated upon MoS2 NPs exposure, which supports the mechanistic role of MoS2 NPs in improving cellular growth and photosynthesis. The "doping-like" effects on marine algae suggest that the low concentration of MoS2 NPs might change the rudimentary ecological composition in the ocean.


Assuntos
Microalgas , Nanopartículas , Dissulfetos/toxicidade , Microalgas/genética , Molibdênio/toxicidade , Nanopartículas/toxicidade
9.
Biotechnol Biofuels ; 13: 160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944076

RESUMO

BACKGROUND: Despite the great potential of marine diatoms in biofuel sector, commercially viable biofuel production from native diatom strain is impractical. Targeted engineering of TAG pathway represents a promising approach; however, recruitment of potential candidate has been regarded as critical. Here, we identified a glycerol-3-phosphate acyltransferase 2 (GPAT2) isoform and overexpressed in Phaeodactylum tricornutum. RESULTS: GPAT2 overexpression did not impair growth and photosynthesis. GPAT2 overexpression reduced carbohydrates and protein content, however, lipid content were significantly increased. Specifically, TAG content was notably increased by 2.9-fold than phospho- and glyco-lipids. GPAT2 overexpression elicited the push-and-pull strategy by increasing the abundance of substrates for the subsequent metabolic enzymes, thereby increased the expression of LPAAT and DGAT. Besides, GPAT2-mediated lipid overproduction coordinated the expression of NADPH biosynthetic genes. GPAT2 altered the fatty acid profile in TAGs with C16:0 as the predominant fatty acid moieties. We further investigated the impact of GPAT2 on conferring abiotic stress, which exhibited enhanced tolerance to hyposaline (70%) and chilling (10 ºC) conditions via altered fatty acid saturation level. CONCLUSIONS: Collectively, our results exemplified the critical role of GPAT2 in hyperaccumulating TAGs with altered fatty acid profile, which in turn uphold resistance to abiotic stress conditions.

10.
Environ Pollut ; 265(Pt A): 114854, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32504890

RESUMO

Waste streams have emerged as potential feedstocks for biofuel production via microbial bioconversion. Metabolic engineering of the microalga Phaeodactylum tricornutum in its lipid biosynthetic pathways has been conducted with an aim to improve lipid production. However, there has been only limited achievement in satisfying biofuel demands by utilising extracellular organic carbons from low-cost waste streams. Herein, we present a successive staged cultivation mode, based on a previously engineered strain that co-overexpresses two key triacylglycerol biosynthesis genes. We first optimised microalgal biomass and lipid production by using food waste hydrolysate and crude glycerol as the cultivation media. Food waste hydrolysate (5% v/v) is a low-cost organic carbon source for enhanced microalgal biomass production, and the resulting lipid concentration was 1.08-fold higher with food-waste hydrolysate than that of the defined medium. Additionally, the resultant lipid concentration after using crude glycerol (100 mM) was 1.24-fold higher than that using the defined medium. Two carbon feeding modes (hybrid and sequential) were also performed to investigate the potential of engineered P. tricornutum with preliminary mechanistic analyses. The biodiesel properties of lipids produced in the hybrid mode were evaluated for potential application prospects. Collectively, this study demonstrates a waste stream utilisation strategy for efficient and sustainable microalgal biofuel production.


Assuntos
Microalgas , Eliminação de Resíduos , Biocombustíveis , Biomassa , Alimentos
11.
Biotechnol J ; 15(2): e1900135, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31464064

RESUMO

Microalgae have long been considered as potential biological feedstock for the production of wide array of bioproducts, such as biofuel feedstock because of their lipid accumulating capability. However, lipid productivity of microalgae is still far below commercial viability. Here, a glucose-6-phosphate dehydrogenase from the oleaginous microalga Nannochloropsis oceanica is identified and heterologously expressed in the green microalga Chlorella pyrenoidosa to characterize its function in the pentose phosphate pathway. It is found that the G6PD enzyme activity toward NADPH production is increased by 2.19-fold in engineered microalgal strains. Lipidomic analysis reveals up to 3.09-fold increase of neutral lipid content in the engineered strains, and lipid yield is gradually increased throughout the cultivation phase and saturated at the stationary phase. Moreover, cellular physiological characteristics including photosynthesis and growth rate are not impaired. Collectively, these results reveal the pivotal role of glucose-6-phosphate dehydrogenase from N. oceanica in NADPH supply, demonstrating that provision of reducing power is crucial for microalgal lipogenesis and can be a potential target for metabolic engineering.


Assuntos
Chlorella/enzimologia , Glucosefosfato Desidrogenase/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Lipogênese/genética , Microalgas/enzimologia , Biocombustíveis , Chlorella/genética , Chlorella/crescimento & desenvolvimento , Glucosefosfato Desidrogenase/genética , Engenharia Metabólica , Microalgas/genética , Microalgas/crescimento & desenvolvimento , NADP/metabolismo , Via de Pentose Fosfato , Fotossíntese
12.
Methods Mol Biol ; 2050: 175-179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31468492

RESUMO

Electroporation refers to the application of high strength electric pulse to create transient pores in the membrane, thereby enabling the passage of hydrophilic molecules into the cells. Based on the properties of cell and cell wall, the electroporation parameters vary among the algal species. Here, we demonstrated the optimized protocol for successful introduction of recombinant DNA (~5000 bp) into Nannochloropsis oceanica. The linearized recombinant plasmid that harbors eGFP and Bh-sle as the reporter and marker gene, respectively, was electroporated into the electrocompetent N. oceanica cells at voltage of 2200 V, 50 µF, resistance at 600 Ω using electroporator, and the transformed cells were then screened by molecular analysis. The report exemplifies a straightforward and reliable electroporation strategy for generating transgenic N. oceanica cells.


Assuntos
DNA/genética , Eletroporação/métodos , Estramenópilas/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Estramenópilas/crescimento & desenvolvimento , Transformação Genética
13.
Bioresour Technol ; 296: 122351, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31708386

RESUMO

This study investigates the prospective of utilizing kitchen wastewater and food wastes, biofuels industry byproducts as alternative water and carbon sources. Kitchen wastewater did not impede cellular growth rate of the evolved Phaeodactylum strain E70, which indicates its potential as an alternative to freshwater resources. Among the organic wastes assessed, food waste hydrolysate significantly increased cell growth. Supplement of crude glycerol in cultivation medium enhances the total fatty acid content. Mixed food waste hydrolysate and crude glycerol remarkably increased both the cell density and total fatty acid content. Also, the supplement of butylated hydroxytoluene alleviated the oxidative stress induced by impurities in organic wastes and concomitantly increased microalgal total fatty acids and polyunsaturated fatty acids content. The experimental results reported in this study show that a waste-based biorefinery could lead to utilization of organic waste resources for the efficient production of value-added products.


Assuntos
Biocombustíveis , Alimentos , Eliminação de Resíduos , Ácidos Graxos Insaturados , Estudos Prospectivos
14.
Biotechnol Bioeng ; 116(11): 3006-3015, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31282986

RESUMO

There has been growing interest in using microalgae as production hosts for a wide range of value-added compounds. However, microalgal genetic improvement is impeded by lack of genetic tools to concurrently control multiple genes. Here, we identified two novel strong promoters, designated Pt202 and Pt667, and delineated their potential role on simultaneously driving the expression of key lipogenic genes in Phaeodactylum tricornutum. In silico analyses of the identified promoter sequences predicted the presence of essential core cis elements such as TATA and CAAT boxes. Regulatory role of the promoters was preliminarily assessed by using GUS reporter which demonstrated strong GUS expression. Thereafter, two key lipogenic genes including malic enzyme (PtME) and 5-desaturase (PtD5b), were overexpressed by the two promoters Pt202 and Pt667, respectively, in P. tricornutum. Combinatorial gene overexpression did not impair general physiological performance, meanwhile neutral lipid content was remarkably increased by 2.4-fold. GC-MS analysis of fatty acid methyl esters revealed that eicosapentaenoic acid (EPA; C20:5) was increased significantly. The findings augment a crucial kit to microalgal genetic tools that could facilitate the multiple-gene expression driven by various promoters, and promote microalgae for industrial bioproduction.


Assuntos
Diatomáceas , Regulação da Expressão Gênica/fisiologia , Lipogênese/fisiologia , Microalgas , Regiões Promotoras Genéticas , Diatomáceas/genética , Diatomáceas/metabolismo , Microalgas/genética , Microalgas/metabolismo
15.
Bioresour Technol ; 289: 121720, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31271916

RESUMO

Haematococcus pluvialis is a main biological resource for the antioxidant astaxanthin production, however, potential modulators and molecular mechanisms underpinning astaxanthin accumulation remain largely obscured. We discovered that provision of ethanol (0.4%) significantly triggered the cellular astaxanthin content up to 3.85% on the 4th day of treatment. Amongst, 95% of the accumulated astaxanthin was esterified, particularly enriched with monoesters. Ultrastructural analysis revealed that ethanol altered cell wall structure and physiological properties. Antioxidant analyses revealed that astaxanthin accumulation offset the ethanol induced oxidative stress. Ethanol treatment reduced carbohydrates while increased lipids and jasmonic acid production. Transcriptomic analysis uncovered that ethanol orchestrated the expression of crucial genes involved in carotenogenesis, e.g. PSY, BKT and CRTR-b were significantly upregulated. Moreover, methyl jasmonic acid synthesis was induced and played a major role in regulating the carotenogenic genes. The findings uncovered the novel viewpoint in the intricate transcriptional regulatory mechanisms of astaxanthin biosynthesis.


Assuntos
Clorofíceas/metabolismo , Ciclopentanos/metabolismo , Etanol/farmacologia , Oxilipinas/metabolismo , Clorofíceas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Xantofilas/biossíntese
16.
Sci Adv ; 5(1): eaau3795, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30729156

RESUMO

Commercialization of algal lipids and biofuels is still impractical owing to the unavailability of lipogenic strains and lack of economically viable oil extraction strategies. Because lipogenesis is governed by multiple factors, success in generating industrial-suitable algal strains using conventional strategies has been limited. We report the discovery of a novel bZIP1 transcription factor, NobZIP1, whose overexpression results in a remarkable elevation of lipid accumulation and lipid secretion in a model microalga Nannochloropsis oceanica, without impairing other physiological properties. Chromatin immunoprecipitation-quantitative PCR analysis revealed that the key genes up- and down-regulated by NobZIP1 are involved in lipogenesis and cell wall polymer synthesis, respectively, which, in turn, induce lipid overproduction and secretion. Among these regulated genes, UDP-glucose dehydrogenase was shown to alter cell wall composition, thus also boosting lipid secretion. In summary, these results offer a comprehensive strategy for concurrent lipid overproduction and secretion, strongly increasing the commercial potential of microalgae.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Ácidos Graxos/biossíntese , Microalgas/genética , Microalgas/metabolismo , Estramenópilas/genética , Estramenópilas/metabolismo , Transcrição Gênica , Biocombustíveis , Metabolismo dos Carboidratos/genética , Parede Celular/genética , Imunoprecipitação da Cromatina/métodos , Inativação Gênica , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Desidrogenase do Álcool de Açúcar/genética
17.
Biotechnol J ; 14(3): e1800220, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30076758

RESUMO

Chrysolaminarin, the primary polysaccharide reservoir in some marine algae, has attracted much attention due to its broad health properties. However, its biosynthetic pathway and regulation mechanisms have rarely been reported which hinders the improvement of production efficiency. Therefore, this study aims to identify key metabolic nodes in the chrysolaminarin biosynthetic pathway. A phosphoglucomutase (PGM) in the model microalga Phaeodactylum tricornutum, revealing its critical role in chrysolaminarin biosynthesis is identified. PGM overexpression significantly elevates chrysolaminarin content by 2.54-fold and reaches 25.6% of cell dry weight; while algal growth and photosynthesis are not impaired. Besides, PGM overexpression up- and down-regulates the expression of chrysolaminarin and lipid biosynthetic genes, respectively. Microscopic analysis of aniline blue stained cells reveals that overproduced chrysolaminarin localized predominantly in vacuoles. Lipidomic analyses reveal that PGM overexpression significantly reduces the lipid content. The findings reveal the critical role of PGM in regulating the carbon flux between carbohydrate and lipid biosynthesis in microalgae, and provide a promising candidate for high efficiency production of chrysolaminarin.


Assuntos
Ciclo do Carbono/fisiologia , Carbono/metabolismo , Microalgas/metabolismo , Fosfoglucomutase/metabolismo , Polímeros/metabolismo , Vias Biossintéticas/fisiologia , Regulação para Baixo/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/química , Fotossíntese/fisiologia , Polissacarídeos/metabolismo , Regulação para Cima/fisiologia
18.
Biotechnol Biofuels ; 11: 318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479663

RESUMO

BACKGROUND: Metabolic engineering has emerged as a potential strategy for improving microalgal lipid content through targeted changes to lipid metabolic networks. However, the intricate nature of lipogenesis has impeded metabolic engineering. Therefore, it is very important to identify the crucial metabolic nodes and develop strategies to exploit multiple genes for transgenesis. In an attempt to unravel the microalgal triacylglycerol (TAG) pathway, we overexpressed two key lipogenic genes, glycerol-3-phosphate acyltransferase (GPAT1) and lysophosphatidic acid acyltransferase (LPAT1), in oleaginous Phaeodactylum tricornutum and determined their roles in microalgal lipogenesis. RESULTS: Engineered P. tricornutum strains showed enhanced growth and photosynthetic efficiency compared with that of the wild-type during the growth phase of the cultivation period. However, both the cell types reached stationary phase on day 7. Overexpression of GPAT1 and LPAT1 increased the TAG content by 2.3-fold under nitrogen-replete conditions without compromising cell growth, and they also orchestrated the expression of other key genes involved in TAG synthesis. The transgenic expression of GPAT1 and LPAT1 influenced the expression of malic enzyme and glucose 6-phosphate dehydrogenase, which enhanced the levels of lipogenic NADPH in the transgenic lines. In addition, GPAT1 and LPAT1 preferred C16 over C18 at the sn-2 position of the glycerol backbone. CONCLUSION: Overexpression of GPAT1 together with LPAT1 significantly enhanced lipid content without affecting growth and photosynthetic efficiency, and they orchestrated the expression of other key photosynthetic and lipogenic genes. The lipid profile for elevated fatty acid content (C16-CoA) demonstrated the involvement of the prokaryotic TAG pathway in marine diatoms. The results suggested that engineering dual metabolic nodes should be possible in microalgal lipid metabolism. This study also provides the first demonstration of the role of the prokaryotic TAG biosynthetic pathway in lipid overproduction and indicates that the fatty acid profile can be tailored to improve lipid production.

19.
Appl Microbiol Biotechnol ; 102(24): 10803-10815, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30349933

RESUMO

Commercial production of biofuel from oleaginous microalgae is often impeded by their slow growth rate than other fast-growing algal species. A promising strategy is to genetically engineer the fast-growing algae to accumulate lipids by expressing key lipogenic genes from oleaginous microalgae. However, lacking of strong expression cassette to transform most of the algal species and potential metabolic target to engineer lipid metabolism has hindered its biotechnological applications. In this study, we engineered the oxidative pentose phosphate pathway (PPP) of green microalga Chlorella pyrenoidosa for lipid enhancement by expressing a glucose-6-phosphate dehydrogenase (G6PD) from oleaginous diatom Phaeodactylum tricornutum. Molecular characterization of transformed lines revealed that heterologous PtG6PD was transcribed and expressed successfully. Interestingly, subcellular localization analyses revealed that PtG6PD was targeted to chloroplasts of C. pyrenoidosa. PtG6PD expression remarkably elevated NADPH content and consequently enhanced the lipid content without affecting growth rate. Collectively, this report represents a promising candidate to engineer lipid biosynthesis in heterologous hosts with notable commercial significance, and it highlights the potential role of plastidial PPP in supplying lipogenic NADPH in microalgae.


Assuntos
Chlorella/genética , Chlorella/metabolismo , Diatomáceas/genética , Glucosefosfato Desidrogenase/genética , NADP/metabolismo , Carbono/metabolismo , Chlorella/crescimento & desenvolvimento , Clonagem Molecular , Diatomáceas/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Glucosefosfato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/genética , Lipogênese , Microalgas/genética , Microalgas/metabolismo , Nitrogênio/metabolismo , Via de Pentose Fosfato/genética , Fotossíntese , Plantas Geneticamente Modificadas
20.
Bioresour Technol ; 269: 434-442, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30093226

RESUMO

Provision of chemical modulators has emerged as an effective strategy to govern cell growth and development. Here, the impact of flavonoid quercetin on algal growth, lipid accumulation and transcriptional patterns was investigated in the green microalga Chlorella vulgaris. These results demonstrated that quercetin (15 µg/l) significantly enhanced the cellular biomass and photosynthetic efficiency, with up to 2.5-fold in the biomass in the stationary phase. Lipidomic analyses revealed that lipid content was increased by 1.8-fold. Furthermore, the functional mechanism of quercetin on the molecular level was dissected by transcriptomic analysis. Results revealed that quercetin upregulated the expression pattern of key genes involved in cellular signaling mechanisms such as phosphatidylinositol 4-kinase α, thus consequently enhanced cell growth. Altogether, the data present in this study demonstrate the dramatic role of quercetin on enhancing microalgal biomass and lipid accumulation by unprecedented regulation, of key metabolic nodes, for the first time and provide a novel insight into microalgal metabolism and regulation.


Assuntos
Chlorella vulgaris , Lipídeos , Quercetina , Biomassa , Chlorella , Microalgas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...