Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Antiviral Res ; 228: 105933, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851593

RESUMO

The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 µM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 µM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.


Assuntos
Ácido Dicloroacético , Glucose , Replicação Viral , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Ácido Dicloroacético/farmacologia , Replicação Viral/efeitos dos fármacos , Glucose/metabolismo , Humanos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/virologia , Células-Tronco Neurais/metabolismo , Animais , Glicólise/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antivirais/farmacologia
2.
Am J Trop Med Hyg ; 110(5): 856-867, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579704

RESUMO

Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.


Assuntos
Vírus da Dengue , Dengue , MicroRNAs , Replicação Viral , MicroRNAs/genética , Vírus da Dengue/genética , Humanos , Dengue/imunologia , Dengue/virologia , Animais , Replicação Viral/genética , Aedes/virologia , Aedes/genética
3.
Sci Rep ; 14(1): 6891, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519592

RESUMO

The study addressed a significant gap in the profiling and understanding of the gut microbiota's influence on Malaysian Malay women with gestational diabetes mellitus (GDM). This prospective cohort study aimed to explore the intricate relationship between gut microbiota, dietary choices, and lifestyle factors among Malay women, both with and without GDM. The research specifically focused on participants during the second (T0) and third (T1) trimesters of pregnancy in Johor Bahru, Malaysia. In Part 1 of the study, a diverse pool of pregnant women at T0 was categorized into two groups: those diagnosed with GDM and those without GDM, with a total sample size of 105 individuals. The assessments encompassed demographic, clinical, lifestyle, and dietary factors at the T0 and T1 trimesters. Part 2 of the study delved into microbiome analysis, targeting a better understanding of the gut microbiota among the participants. Stool samples were randomly collected from 50% of the individuals in each group (GDM and non-GDM) at T0 and T1. The collected samples underwent processing, and 16s rRNA metagenomic analysis was employed to study the microbial composition. The results suggested an association between elevated body weight and glucose levels, poor sleep quality, lack of physical activity, greater intake of iron and meat, and reduced fruit consumption among women with GDM compared to non-GDM groups. The microbiome analysis revealed changes in microbial composition over time, with reduced diversity observed in the GDM group during the third trimester. The genera Lactiplantibacillus, Parvibacter, Prevotellaceae UCG001, and Vagococcus positively correlated with physical activity levels in GDM women in the second trimester. Similarly, the genus Victivallis exhibited a strong positive correlation with gravida and parity. On the contrary, the genus Bacteroides and Roseburia showed a negative correlation with omega-3 polyunsaturated fatty acids (PUFAs) in women without GDM in the third trimester. The study highlighted the multifaceted nature of GDM, involving a combination of lifestyle factors, dietary choices, and changes in gut microbiota composition. The findings emphasized the importance of considering these interconnected elements in understanding and managing gestational diabetes among Malaysian Malay women. Further exploration is essential to comprehend the mechanisms underlying this relationship and develop targeted interventions for effective GDM management.


Assuntos
Diabetes Gestacional , Microbioma Gastrointestinal , Gravidez , Humanos , Feminino , Diabetes Gestacional/diagnóstico , Microbioma Gastrointestinal/genética , Estudos Prospectivos , RNA Ribossômico 16S/genética , Dieta , Estilo de Vida
4.
Influenza Other Respir Viruses ; 18(3): e13276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513364

RESUMO

Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Anticorpos Antivirais , Hemaglutininas , Proteínas Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
5.
Postgrad Med J ; 100(1186): 539-554, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38493312

RESUMO

The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.


Assuntos
Eixo Encéfalo-Intestino , COVID-19 , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Probióticos , SARS-CoV-2 , Humanos , COVID-19/terapia , COVID-19/complicações , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Probióticos/uso terapêutico
6.
Pathology ; 55(7): 907-916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852802

RESUMO

Enterovirus D68 (EV-D68) is one of hundreds of non-polio enteroviruses that typically cause cold-like respiratory illness. The first EV-D68 outbreak in the United States in 2014 aroused widespread concern among the public and health authorities. The infection was found to be associated with increased surveillance of acute flaccid myelitis, a neurological condition that causes limb paralysis in conjunction with spinal cord inflammation. In vitro studies utilising two-dimensional (2D) and three-dimensional (3D) culture systems have been employed to elucidate the pathogenic mechanism of EV-D68. Various animal models have also been developed to investigate viral tropism and distribution, pathogenesis, and immune responses during EV-D68 infection. EV-D68 infections have primarily been investigated in respiratory, intestinal and neural cell lines/tissues, as well as in small-size immunocompetent rodent models that were limited to a young age. Some studies have implemented strategies to overcome the barriers by using immunodeficient mice or virus adaptation. Although the existing models may not fully recapitulate both respiratory and neurological disease observed in human EV-D68 infection, they have been valuable for studying pathogenesis and evaluating potential vaccine or therapeutic candidates. In this review, we summarise the methodologies and findings from each experimental model and discuss their applications and limitations.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Humanos , Animais , Estados Unidos , Camundongos , Enterovirus Humano D/fisiologia , Doenças Neuromusculares/complicações , Mielite/complicações , Mielite/epidemiologia , Paralisia/complicações
7.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108513

RESUMO

The interleukin (IL)-12 family consists of pro- and anti-inflammatory cytokines that are able to signal the activation of host antiviral immunity while preventing over-reactive immune reactions due to active virus replication and viral clearance. Amongst others, IL-12 and IL-23 are produced and released by innate immune cells such as monocytes and macrophages to signal the proliferation of T cells and release of effector cytokines, which subsequently activate host defence against virus infections. Interestingly, the dualities of IL-27 and -35 are evidently shown in the course of virus infections; they regulate the synthesis of cytokines and antiviral molecules, proliferation of T cells, and viral antigen presentation in order to maximize virus clearance by the host immune system. In terms of anti-inflammatory reactions, IL-27 signals the formation of regulatory T cells (Treg) which in turn secrete IL-35 to control the scale of inflammatory response that takes place during virus infections. Given the multitasking of the IL-12 family in regards to the elimination of virus infections, its potential in antiviral therapy is unequivocally important. Thus, this work aims to delve deeper into the antiviral actions of the IL-12 family and their applications in antiviral therapies.


Assuntos
Interleucina-27 , Viroses , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Interleucina-12 , Citocinas/fisiologia , Viroses/tratamento farmacológico , Viroses/prevenção & controle , Imunidade Inata/fisiologia
8.
Curr Nutr Rep ; 12(1): 203-214, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36810808

RESUMO

PURPOSE OF REVIEW: Although gut microbiota have been associated with the etiology of some diseases, the influence of foods on gut microbiota, especially among pregnant women, remains unclear. Hence, a systematic review was performed to investigate the association between diet and gut microbiota and their influence on metabolic health in pregnant women. RECENT FINDINGS: We performed the systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 protocol to investigate the association between diet and gut microbiota and their influence on metabolic role in pregnant women. Five databases were searched for relevant peer-reviewed articles published in English since 2011. Two-staged screening of 659 retrieved records resulted in the inclusion of 10 studies. The collated findings suggested associations between nutrient intakes and four key microbes: Collinsella, Lachnospira, Sutterella, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio in pregnant women. Dietary intakes in pregnancy were found to modify the gut microbiota and positively influence the cell metabolism in pregnant women. This review, however, emphasizes the importance of conducting well-designed prospective cohorts to investigate the role of changes in dietary intakes within the pregnancy and the influence of such changes on gut microbiota.


Assuntos
Microbioma Gastrointestinal , Gravidez , Feminino , Humanos , Estudos Prospectivos , Dieta
9.
Anticancer Agents Med Chem ; 22(20): 3325-3342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578854

RESUMO

Ocimum sanctum is a sacred herb of India and is commonly known as 'Tulsi' or 'Holy Basil' in regional languages of the country. Various parts of O. sanctum are recognised to have remarkable therapeutic efficacy, and are therefore used in Indian traditional medicine system, Ayurveda. Scientific studies have shown that O. sanctum has a range of pharmacological activities. The presence of a substantial amount of polyphenols in O. sanctum could be the reason for its excellent bioactivity. Polyphenols are used to prevent or treat oncologic diseases due to their anti-cancer effects, which are related to activation of apoptotic signaling, cell cycle arrest, binding ability with membrane receptors, and potential effects on immunomodulation and epigenetic mechanisms. The poor bioavailability of polyphenols restricts their clinical use. The application of nanonization has been implemented to improve their bioavailability, penetrability, and prolong their anticancer action. The present review analyses the recent preclinical studies related to the chemo-preventive and therapeutic potential of polyphenols present in O. sanctum. Moreover, the current article also examines in-depth the biochemical and molecular mechanisms involved in the antineoplastic actions of the considered polyphenols.


Assuntos
Antineoplásicos , Ocimum , Óleos Voláteis , Humanos , Ocimum sanctum , Polifenóis/farmacologia , Ocimum/química , Extratos Vegetais/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
10.
PLoS Negl Trop Dis ; 16(4): e0010291, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482672

RESUMO

Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.


Assuntos
Flavivirus , Hepatite C Crônica , Vírus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Hepatite C Crônica/tratamento farmacológico , Humanos
11.
Front Immunol ; 13: 773191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371036

RESUMO

Zika virus (ZIKV), despite being discovered six decades earlier, became a major health concern only after an epidemic in French Polynesia and an increase in the number of microcephaly cases in Brazil. Substantial evidence has been found to support the link between ZIKV and neurological complications in infants. The virus targets various cells in the brain, including radial glial cells, neural progenitor cells (NPCs), astrocytes, microglial and glioblastoma stem cells. It affects the brain cells by exploiting different mechanisms, mainly through apoptosis and cell cycle dysregulation. The modulation of host immune response and the inflammatory process has also been demonstrated to play a critical role in ZIKV induced neurological complications. In addition to that, different ZIKV strains have exhibited specific neurotropism and unique molecular mechanisms. This review provides a comprehensive and up-to-date overview of ZIKV-induced neuroimmunopathogenesis by dissecting its main target cells in the brain, and the underlying cellular and molecular mechanisms. We highlighted the roles of the different ZIKV host factors and how they exploit specific host factors through various mechanisms. Overall, it covers key components for understanding the crosstalk between ZIKV and the brain.


Assuntos
Microcefalia , Doenças do Sistema Nervoso , Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Encéfalo/patologia , Humanos , Microcefalia/patologia , Doenças do Sistema Nervoso/patologia , Células-Tronco Neurais/patologia , Zika virus/fisiologia
12.
Malar J ; 21(1): 79, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264165

RESUMO

BACKGROUND: The malaria risk analysis of multiple populations is crucial and of great importance whilst compressing limitations. However, the exponential growth in diversity and accumulation of genetic variation data obtained from malaria-infected patients through Genome-Wide Association Studies opens up unprecedented opportunities to explore the significant differences between genetic markers (risk factors), particularly in the resistance or susceptibility of populations to malaria risk. Thus, this study proposes using statistical tests to analyse large-scale genetic variation data, comprising 20,854 samples from 11 populations within three continents: Africa, Oceania, and Asia. METHODS: Even though statistical tests have been utilized to conduct case-control studies since the 1950s to link risk factors to a particular disease, several challenges faced, including the choice of data (ordinal vs. non-ordinal) and test (parametric vs. non-parametric). This study overcomes these challenges by adopting the Mann-Whitney U test to analyse large-scale genetic variation data; to explore the statistical significance of markers between populations; and to further identify the highly differentiated markers. RESULTS: The findings of this study revealed a significant difference in the genetic markers between populations (p < 0.01) in all the case groups and most control groups. However, for the highly differentiated genetic markers, a significant difference (p < 0.01) was present for most genetic markers with varying p-values between the populations in the case and control groups. Moreover, several genetic markers were observed to have very significant differences (p < 0.001) across all populations, while others exist between certain specific populations. Also, several genetic markers have no significant differences between populations. CONCLUSIONS: These findings further support that the genetic markers contribute differently between populations towards malaria resistance or susceptibility, thus showing differences in the likelihood of malaria infection. In addition, this study demonstrated the robustness of the Mann-Whitney U test in analysing genetic markers in large-scale genetic variation data, thereby indicating an alternative method to explore genetic markers in other complex diseases. The findings hold great promise for genetic markers analysis, and the pipeline emphasized in this study can fully be reproduced to analyse new data.


Assuntos
Estudo de Associação Genômica Ampla , Malária , Marcadores Genéticos , Variação Genética , Humanos , Malária/genética , Estatísticas não Paramétricas
13.
Front Microbiol ; 13: 743147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308394

RESUMO

Zika virus (ZIKV) is a mosquito-borne, single-stranded RNA virus belonging to the genus Flavivirus. Although ZIKV infection is usually known to exhibit mild clinical symptoms, intrauterine ZIKV infections have been associated with severe neurological manifestations, including microcephaly and Guillain Barre syndrome (GBS). Therefore, it is imperative to understand the mechanisms of ZIKV entry into the central nervous system (CNS) and its effect on brain cells. Several routes of neuro-invasion have been identified, among which blood-brain barrier (BBB) disruption is the commonest mode of access. The molecular receptors involved in viral entry remain unknown; with various proposed molecular ZIKV-host interactions including potential non-receptor mediated cellular entry. As ZIKV invade neuronal cells, they trigger neurotoxic mechanisms via cell-autonomous and non-cell autonomous pathways, resulting in neurogenesis dysfunction, viral replication, and cell death, all of which eventually lead to microcephaly. Together, our understanding of the biological mechanisms of ZIKV exposure would aid in the development of anti-ZIKV therapies targeting host cellular and/or viral components to combat ZIKV infection and its neurological manifestations. In this present work, we review the current understanding of ZIKV entry mechanisms into the CNS and its implications on the brain. We also highlight the status of the drug repurposing approach for the development of potential antiviral drugs against ZIKV.

14.
Front Immunol ; 12: 750365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745123

RESUMO

Zika virus (ZIKV) received worldwide attention over the past decade when outbreaks of the disease were found to be associated with severe neurological syndromes and congenital abnormalities. Unlike most other flaviviruses, ZIKV can spread through sexual and transplacental transmission, adding to the complexity of Zika pathogenesis and clinical outcomes. In addition, the spread of ZIKV in flavivirus-endemic regions, and the high degree of structural and sequence homology between Zika and its close cousin Dengue have raised questions on the interplay between ZIKV and the pre-existing immunity to other flaviviruses and the potential immunopathogenesis. The Zika epidemic peaked in 2016 and has affected over 80 countries worldwide. The re-emergence of large-scale outbreaks in the future is certainly a possibility. To date, there has been no approved antiviral or vaccine against the ZIKV. Therefore, continuing Zika research and developing an effective antiviral and vaccine is essential to prepare the world for a future Zika epidemic. For this purpose, an in-depth understanding of ZIKV interaction with many different pathways in the human host and how it exploits the host immune response is required. For successful infection, the virus has developed elaborate mechanisms to escape the host response, including blocking host interferon response and shutdown of certain host cell translation. This review provides a summary on the key host factors that facilitate ZIKV entry and replication and the mechanisms by which ZIKV antagonizes antiviral innate immune response and involvement of adaptive immune response leading to immunopathology. We also discuss how ZIKV modulates the host immune response during sexual transmission and pregnancy to induce infection, how the cross-reactive immunity from other flaviviruses impacts ZIKV infection, and provide an update on the current status of ZIKV vaccine development.


Assuntos
Infecção por Zika virus , Imunidade Adaptativa , Animais , Autoimunidade , Reações Cruzadas , Feminino , Síndrome de Guillain-Barré/etiologia , Síndrome de Guillain-Barré/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Gravidez , Doenças Virais Sexualmente Transmissíveis/imunologia , Doenças Virais Sexualmente Transmissíveis/transmissão , Zika virus/fisiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/imunologia , Infecção por Zika virus/transmissão
15.
Front Immunol ; 12: 742941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659238

RESUMO

The coronavirus disease-19 (COVID-19) elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastating health, economic and social impact worldwide. Its clinical spectrum ranges from asymptomatic to respiratory failure and multi-organ failure or death. The pathogenesis of SARS-CoV-2 infection is attributed to a complex interplay between virus and host immune response. It involves activation of multiple inflammatory pathways leading to hyperinflammation and cytokine storm, resulting in tissue damage, acute respiratory distress syndrome (ARDS) and multi-organ failure. Accumulating evidence has raised concern over the long-term health effects of COVID-19. Importantly, the neuroinvasive potential of SARS-CoV-2 may have devastating consequences in the brain. This review provides a conceptual framework on how the virus tricks the host immune system to induce infection and cause severe disease. We also explore the key differences between mild and severe COVID-19 and its short- and long-term effects, particularly on the human brain.


Assuntos
Imunidade Adaptativa/imunologia , COVID-19/patologia , Síndrome da Liberação de Citocina/patologia , Imunidade Inata/imunologia , SARS-CoV-2/imunologia , COVID-19/complicações , COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/sangue , Humanos , Insuficiência de Múltiplos Órgãos/patologia , Síndrome do Desconforto Respiratório/patologia , Fatores Sexuais , Síndrome de COVID-19 Pós-Aguda
16.
Biology (Basel) ; 10(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681126

RESUMO

General gut microbial dysbiosis in diabetes mellitus, including gestational diabetes mellitus (GDM), has been reported in a large body of literature. However, evidence investigating the association between specific taxonomic classes and GDM is lacking. Thus, we performed a systematic review of peer-reviewed observational studies and trials conducted among women with GDM within the last ten years using standard methodology. The National Institutes of Health (NIH) quality assessment tools were used to assess the quality of the included studies. Fourteen studies investigating microbial interactions with GDM were found to be relevant and included in this review. The synthesis of literature findings demonstrates that Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria phyla, such as Desulfovibrio, Ruminococcaceae, P. distasonis, Enterobacteriaceae, Collinsella, and Prevotella, were positively associated with GDM. In contrast, Bifidobacterium and Faecalibacterium, which produce butyrate, are negatively associated with GDM. These bacteria were associated with inflammation, adiposity, and glucose intolerance in women with GDM. Lack of good diet management demonstrated the alteration of gut microbiota and its impact on GDM glucose homeostasis. The majority of the studies were of good quality. Therefore, there is great potential to incorporate personalized medicine targeting microbiome modulation through dietary intervention in the management of GDM.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33572656

RESUMO

A rapid increase in the prevalence of gestational diabetes mellitus (GDM) has been associated with various factors such as urbanization, lifestyle changes, adverse hyperglycemic intrauterine environment, and the resulting epigenetic changes. Despite this, the burden of GDM has not been well-assessed in Southeast Asia. We comprehensively reviewed published Southeast Asian studies to identify the current research trend in GDM in this region. Joanna Briggs Institute's methodology was used to guide the scoping review. The synthesis of literature findings demonstrates almost comparable clinical evidence in terms of risk factors and complications, challenges presented in diagnosing GDM, and its disease management, given the similarities of the underlying population characteristics in Southeast Asia. Evidence suggests that a large proportion of GDM risk in women may be preventable by lifestyle modifications. However, the GDM burden across countries is expected to rise, given the heterogeneity in screening approaches and diagnostic criteria, mainly influenced by economic status. There is an urgent need for concerted efforts by government and nongovernmental sectors to implement national programs to prevent, manage, and monitor the disease.


Assuntos
Diabetes Gestacional , Sudeste Asiático/epidemiologia , Diabetes Gestacional/epidemiologia , Feminino , Humanos , Programas de Rastreamento , Gravidez , Prevalência , Fatores de Risco
18.
ACS Chem Neurosci ; 11(21): 3488-3498, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33064448

RESUMO

Dysbiosis of gut microbiota may lead to a range of diseases including neurological disorders. Thus, it is hypothesized that regulation of the intestinal microbiota may prevent or treat epilepsy. The purpose of this systematic review is to evaluate the evidence investigating the relationship between gut microbiota and epilepsy and possible interventions. A systematic review of the literature was done on four databases (PubMed, Scopus, EMBASE, and Web of Science). Study selection was restricted to original research articles while following the PRISMA guidelines. Six studies were selected. These studies cohesively support the interaction between gut microbiota and epileptic seizures. Gut microbiota analysis identified increases in Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria with decreases in Bacteroidetes and Actinobacteria in epileptic patients. Ketogenic diet, probiotics, and fecal microbiota transplantation (FMT) improved the dysbiosis of the gut microbiota and seizure activity. However, the studies either had a small sample size, lack of subject variability, or short study or follow-up period, which may question their reliability. Nevertheless, these limited studies conclusively suggest that gut microbiota diversity and dysbiosis may be involved in the pathology of epilepsy. Future studies providing more reliable and in depth insight into the gut microbial community will spark promising alternative therapies to current epilepsy treatment.


Assuntos
Epilepsia , Microbioma Gastrointestinal , Bacteroidetes , Disbiose/terapia , Epilepsia/terapia , Humanos , Reprodutibilidade dos Testes
19.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32461319

RESUMO

Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1ß (IL-1ß) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1ß expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Regulação da Expressão Gênica , Interleucina-1beta/biossíntese , MicroRNAs/metabolismo , Estabilidade de RNA , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular Tumoral , Cricetinae , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genética
20.
Cell Rep ; 29(12): 3997-4009.e5, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851929

RESUMO

Influenza A viruses (IAVs) have a remarkable tropism in their ability to circulate in both mammalian and avian species. The IAV NS1 protein is a multifunctional virulence factor that inhibits the type I interferon host response through a myriad of mechanisms. How NS1 has evolved to enable this remarkable property across species and its specific impact in the overall replication, pathogenicity, and host preference remain unknown. Here we analyze the NS1 evolutionary landscape and host tropism using a barcoded library of recombinant IAVs. Results show a surprisingly great variety of NS1 phenotypes according to their ability to replicate in different hosts. The IAV NS1 genes appear to have taken diverse and random evolutionary pathways within their multiple phylogenetic lineages. In summary, the high evolutionary plasticity of this viral protein underscores the ability of IAVs to adapt to multiple hosts and aids in our understanding of its global prevalence.


Assuntos
Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/patogenicidade , Mutação , Infecções por Orthomyxoviridae/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Cães , Feminino , Imunidade Inata , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Camundongos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Filogenia , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...