Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Steroids ; 210: 109483, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053631

RESUMO

Steroid hormones often circulate in the plasma as inactive sulfated forms, such as estrone sulfate and dehydroepiandrosterone sulfate. The enzyme steroid sulfatase (STS) converts these steroids into active forms, mainly estrogens, in peripheral tissues. STS is present in most tissues, but it occurs at higher levels in certain organs, notably liver and placenta. In this study, we examined the tissue distribution of STS in a prominent laboratory model, the house mouse (Mus musculus). Tissues included were heart, liver, small intestine, skeletal muscle, and gonads of both sexes. An 3H-estrone-sulfate conversion assay was used to measure STS activity in tissue homogenates and extracts. STS activities were high for hepatic tissue homogenates of both genders. Testicular STS levels were similar to those of liver, while STS activities of ovary, small intestine, heart, and muscle were considerably lower. The specific STS inhibitors, EMATE and STX-64 virtually eliminated STS activity in hepatic microsomes and cytosols, verifying that the observed enzyme activity was due to STS. Enzyme kinetic assays showed Km values of 8.6 µM for liver and 9.1 µM for testis, using E1S as substrate. Hepatic and testicular STS activities, measured in CHAPS-extracted microsome, were low up to 5 weeks of age and were higher through 56 weeks. Western blotting, with a specific STS antibody, confirmed the presence of STS protein (65 Da) in both liver and testis. Immunofluorescence of tissue sections detected the presence of STS protein in hepatocytes, in testicular Leydig cells and in seminiferous tubules (Leydig cells and developing germ cells). These results suggest that STS may have a significant role in testicular function.


Assuntos
Fígado , Esteril-Sulfatase , Testículo , Animais , Masculino , Camundongos , Testículo/metabolismo , Testículo/enzimologia , Fígado/metabolismo , Fígado/enzimologia , Esteril-Sulfatase/metabolismo , Feminino
2.
Steroids ; 191: 109163, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581086

RESUMO

Curcumin is a phytochemical derived from the spice turmeric that is reported to have therapeutic effects. We are studying the enzyme steroid sulfatase (STS), which removes the sulfate group from inactive steroid hormones in peripheral tissues and we were interested in the effect of curcumin on STS activity due to its structural composition (polyphenolic). We sought to determine if curcumin affects STS activity in two model systems, rat liver and NIH-3T3 mouse fibroblast cells. STS assays were performed on tissue extracts of rat liver, and on NIH-3T3 microsomes and cells, with and without curcumin. Male and female rat liver extracts contained substantial amounts of STS activity, with males averaging higher (4-11 %) levels. Estradiol inhibited STS activity in livers of both sexes at 20 and 10 µM. Curcumin acted as a competitive inhibitor of STS activity in rat liver extracts, with a Ki of 19.8 µM in males and 9.3 µM in females. Curcumin also inhibited STS activity in NIH-3T3 microsomes at both 20 µM and 10 µM, and in whole NIH-3T3 cells at 20 µM. These data are the first to demonstrate STS inhibition by curcumin. Inhibition of STS results in lower active steroid hormone (estrogens and androgens) levels in tissues, possibly altering modulation of immune responses by these steroids.


Assuntos
Curcumina , Inibidores Enzimáticos , Esteril-Sulfatase , Animais , Feminino , Masculino , Camundongos , Ratos , Curcumina/farmacologia , Inibidores Enzimáticos/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Extratos Hepáticos , Células NIH 3T3 , Esteril-Sulfatase/antagonistas & inibidores
3.
Steroids ; 174: 108890, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34280393

RESUMO

Steroid hormones often circulate in the blood as inactive sulfated forms, such as estrone sulfate and dehydroepiandrosterone sulfate. The enzyme steroid sulfatase (STS) converts these steroids into active forms, mainly estrogens, in peripheral tissues. We have previously characterized STS activity in human and mouse breast and bone tissues, and we have shown that STS can provide estrogens to these tissues from circulating sulfated precursors. This study was designed to characterize STS activity in a mouse fibroblast cell line (NIH-3T3). Using a radioactive estrone sulfate (E1S) conversion assay, we detected STS activity in cultured NIH-3T3 cells. This activity was blocked by the STS inhibitors EMATE and STX-64, indicating authentic STS activity. We also found that microsomes prepared from NIH-3T3 cells had relatively high STS activity and that cytosols had low activity, consistent with the known distribution of this enzyme to the endoplasmic reticulum. Michaelis-Menten analysis of the NIH-3T3 microsomes indicated a Km of 10.9 µM using E1S as substrate. Primary fibroblasts prepared from mouse ears and tails also had measurable STS activity, as indicated by 3H-E1S conversion assay, further supporting the conclusion that fibroblasts possess STS. Furthermore, Western blotting confirmed the presence of immunoreactive STS in NIH-3T3 microsomes. With regard to regulation, treatments of cultured NIH-3T3 cells revealed that cortisol and the synthetic glucocorticoids dexamethasone and prednisolone decreased STS activity, as we have found for cell lines from other tissues. The effect of cortisol was seen at both 10 µM and 1.0 µM but not at 0.1 µM. Western blotting also indicated a decrease in STS immunoreactivity in cortisol-treated microsomes. The reduction in STS activity by dexamethasone in whole cells was reversed by the glucocorticoid receptor antagonist RU-486, indicating that glucocorticoid downregulation of STS activity is receptor mediated. An inhibition assay on NIH-3T3 microsomes revealed that STS activity was inhibited significantly by 10 µM estradiol-17ß, a known substrate inhibitor of E1S for STS, but not by 10 µM cortisol. This is consistent with the idea that cortisol inhibits STS in NIH-3T3 cells through a regulatory mechanism rather than by substrate inhibition. Our results could have important implications regarding local estrogen production by STS in fibroblasts, which are the most common connective tissue cells in the body, and on possible regulation of local estrogen levels by cortisol.


Assuntos
Esteril-Sulfatase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA