Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(6): e0234442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555585

RESUMO

Seasonal migrations are key to the production and persistence of marine fish populations but movements within shelf migration corridors or, "flyways", are poorly known. Atlantic sturgeon and striped bass, two critical anadromous species, are known for their extensive migrations along the US Mid-Atlantic Bight. Seasonal patterns of habitat selection have been described within spawning rivers, estuaries,and shelf foraging habitats, but information on the location and timing of key coastal migrations is limited. Using a gradient-based array of acoustic telemetry receivers, we compared the seasonal incidence and movement behavior of these species in the near-shelf region of Maryland, USA. Atlantic sturgeon incidence was highest in the spring and fall and tended to be biased toward shallow regions, while striped bass had increased presence during spring and winter months and selected deeper waters. Incidence was transient (mean = ~2 d) for both species with a pattern of increased residency (>2 d) during autumn and winter, particularly for striped bass, with many individuals exhibiting prolonged presence on the outer shelf during winter. Flyways also differed spatially between northern and southern migrations for both species and were related to temperature: striped bass were more likely to occur in cool conditions while Atlantic sturgeon preferred warmer temperatures. Observed timing and spatial distribution within the Mid-Atlantic flyway were dynamic between years and sensitive to climate variables. As shelf ecosystems come under increasing maritime development, gridded telemetry designs represent a feasible approach to provide impact responses within key marine flyways like those that occur within the US Mid-Atlantic Bight.


Assuntos
Migração Animal , Bass/fisiologia , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Animais , Oceano Atlântico , Monitorização de Parâmetros Ecológicos/instrumentação , Monitorização de Parâmetros Ecológicos/métodos , Estuários , Maryland , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/estatística & dados numéricos , Estações do Ano , Água do Mar , Análise Espaço-Temporal , Temperatura
2.
PLoS One ; 15(3): e0230029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32142543

RESUMO

Dredging is considered a major threat/impedance to anadromous fish migrating to spawning habitat. Due to the perceived threat caused by dredging, environmental windows that restrict dredge operations are enforced within many rivers along the east coast. However, it is generally unknown how anadromous fish react to encountering an active dredge during spawning migrations. Atlantic sturgeon (ATS) are an endangered, anadromous species along the Atlantic slope of North America. To determine if and how an active dredge may affect ATS spawning migration, a Vemco Positioning System array was deployed around an active hydraulic-cutterhead dredge that adult ATS must traverse to reach spawning habitat in the James River, VA. Telemetry data showed that all ATS that entered the study area survived. ATS that migrated upstream during dredge operations (N = 103) traversed the dredge area and continued upstream to spawning habitat. Many ATS made multiple trips through the study area during dredge operations. There was no noticeable difference in swim behavior regardless of whether the dredge was absent or working within the study area. We suggest that dredging in the lower James River does not create a barrier for adult ATS migrating to spawning habitat or cause adults to significantly modify swim behavior. This is the first study to utilize fine-scale telemetry data to describe how an organism moves in relation to an active dredge. This methodology could be used to describe dredge-sturgeon interactions on different life stages and in other locations and could be expanded to other aquatic organisms of concern.


Assuntos
Ecossistema , Peixes/fisiologia , Migração Animal , Animais , Espécies em Perigo de Extinção , Rios , Som , Água/química
3.
PLoS One ; 12(7): e0179661, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686610

RESUMO

Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F'ST = 0.181) with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically distinct dual spawning groups of Atlantic sturgeon in river systems along the U.S. Atlantic coast, suggesting that current reference population database should be updated to incorporate both new samples and our increased understanding of Atlantic sturgeon life history.


Assuntos
Peixes/genética , Genética Populacional , Repetições de Microssatélites/genética , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Deriva Genética , Variação Genética , Masculino , Rios , Estações do Ano , Virginia
4.
PLoS One ; 10(5): e0128234, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020631

RESUMO

Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations in the United States were listed as either endangered or threatened under the Endangered Species Act in 2012. Because of the endangered/threatened status, a better understanding of Atlantic sturgeon life-history behavior and habitat use is important for effective management. It has been widely documented that Atlantic sturgeon reproduction occurs from late winter to early summer, varying clinally with latitude. However, recent data show Atlantic sturgeon also spawn later in the year. The group that spawns later in the year seems to be completely separate from the spring spawning run. Recognition of the later spawning season has drastically modified estimates of the population status of Atlantic sturgeon in Virginia. With the combination of new telemetry data and historical documentation we describe a dual spawning strategy that likely occurs in various degrees along most, if not all, of the Atlantic sturgeon's range. Using new data combined with historical sources, a new spawning strategy emerges which managers and researchers should note when determining the status of Atlantic sturgeon populations and implementing conservation measures.


Assuntos
Espécies em Perigo de Extinção , Peixes/fisiologia , Reprodução/fisiologia , Animais , Conservação dos Recursos Naturais , Feminino , Masculino , Estados Unidos
5.
Mol Ecol Resour ; 12(5): 822-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22551194

RESUMO

Different analytical techniques used on the same data set may lead to different conclusions about the existence and strength of genetic structure. Therefore, reliable interpretation of the results from different methods depends on the efficacy and reliability of different statistical methods. In this paper, we evaluated the performance of multiple analytical methods to detect the presence of a linear barrier dividing populations. We were specifically interested in determining if simulation conditions, such as dispersal ability and genetic equilibrium, affect the power of different analytical methods for detecting barriers. We evaluated two boundary detection methods (Monmonier's algorithm and WOMBLING), two spatial Bayesian clustering methods (TESS and GENELAND), an aspatial clustering approach (STRUCTURE), and two recently developed, non-Bayesian clustering methods [PSMIX and discriminant analysis of principal components (DAPC)]. We found that clustering methods had higher success rates than boundary detection methods and also detected the barrier more quickly. All methods detected the barrier more quickly when dispersal was long distance in comparison to short-distance dispersal scenarios. Bayesian clustering methods performed best overall, both in terms of highest success rates and lowest time to barrier detection, with GENELAND showing the highest power. None of the methods suggested a continuous linear barrier when the data were generated under an isolation-by-distance (IBD) model. However, the clustering methods had higher potential for leading to incorrect barrier inferences under IBD unless strict criteria for successful barrier detection were implemented. Based on our findings and those of previous simulation studies, we discuss the utility of different methods for detecting linear barriers to gene flow.


Assuntos
Bioestatística/métodos , Fluxo Gênico , Biologia Molecular/métodos , Simulação por Computador , Genética Populacional/métodos
6.
Biol Lett ; 6(5): 708-10, 2010 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-20236963

RESUMO

Populations of sturgeon (Acipenseridae) have experienced global declines, and in some cases extirpation, during the past century. In the current era of climate change and over-harvesting of fishery resources, climate models, based on uncertain boundary conditions, are being used to predict future effects on the Earth's biota. A collection of approximately 400-year-old Atlantic sturgeon spines from a midden in colonial Jamestown, VA, USA, allowed us to compare the age structure and growth rate for a pre-industrial population during a 'mini-ice age' with samples collected from the modern population in the same reach of the James River. Compared with modern fish, the colonial population was characterized by larger and older individuals and exhibited significantly slower growth rates, which were comparable with modern populations at higher latitudes of North America. These results may relate to higher population densities and/or colder water temperatures during colonial times.


Assuntos
Peixes/crescimento & desenvolvimento , Envelhecimento , Animais , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...