Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 11711-11718, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632847

RESUMO

Lithium metal batteries (LMB) have high energy densities and are crucial for clean energy solutions. The characterization of the lithium metal interphase is fundamentally and practically important but technically challenging. Taking advantage of synchrotron X-ray, which has the unique capability of analyzing crystalline/amorphous phases quantitatively with statistical significance, we study the composition and dynamics of the LMB interphase for a newly developed important LMB electrolyte that is based on fluorinated ether. Pair distribution function analysis revealed the sequential roles of the anion and solvent in interphase formation during cycling. The relative ratio between Li2O and LiF first increases and then decreases during cycling, suggesting suppressed Li2O formation in both initial and long extended cycles. Theoretical studies revealed that in initial cycles, this is due to the energy barriers in many-electron transfer. In long extended cycles, the anion decomposition product Li2O encourages solvent decomposition by facilitating solvent adsorption on Li2O which is followed by concurrent depletion of both. This work highlights the important role of Li2O in transitioning from an anion-derived interphase to a solvent-derived one.

2.
ACS Appl Mater Interfaces ; 16(13): 16373-16398, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502743

RESUMO

We use computations and experiments to determine the effect of substituting zirconium, niobium, and tantalum within rutile RuO2 on the structure, oxygen evolution reaction (OER) mechanism and activity, and electrochemical stability. Calculated electronic structures altered by Zr, Nb, and Ta show surface regions of electron density depletion and accumulation, along with anisotropic lattice parameter shifts dependent on the substitution site, substituent, and concentration. Consistent with theory, X-ray photoelectron spectroscopy experiments show shifts in binding energies of O-2s, O-2p, and Ru-4d peaks due to the substituents. Experimentally, the substituted materials showed the presence of two phases with a majority phase that contains the metal substituent within the rutile phase and a second, smaller-percentage RuO2 phase. Our experimental analysis of OER activity shows Zr, Nb, and Ta substituents at 12.5 atom % induce lower activity relative to RuO2, which agrees with computing the average of all sites; however, Zr and Ta substitution at specific sites yields higher theoretical OER activity than RuO2, with Zr substitution suggesting an alternative OER mechanism. Metal dissolution predictions show the involvement of cooperative interactions among multiple surface sites and the electrolyte. Zr substitution at specific sites increases activation barriers for Ru dissolution, however, with Zr surface dissolution rates comparable to those of Ru. Experimental OER stability analysis shows lower Ru dissolution from synthesized RuO2 and Zr-substituted RuO2 compared to commercial RuO2 and comparable amounts of Zr and Ru dissolved from Zr-substituted RuO2, aligned with our calculations.

3.
ACS Energy Lett ; 9(3): 810-818, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482180

RESUMO

Advances in sulfurized-polyacrylonitrile (SPAN)-based cathode materials promise safer and more efficient lithium-sulfur (Li-S) battery performance. To elucidate electrolyte-cathode interfacial electrochemistry and polysulfide (PS) dissolution, we emulate discharge SPAN reactions via ab initio molecular dynamics (AIMD) simulations. Plausible structures and their lithiation profiles are cross-validated via Raman/IR spectroscopy and density functional theory (DFT). Lithium bis(fluorosulfonyl)imide (LiFSI) plays versatile roles in the Li-SPAN cell electrochemistry, primarily as the major source in forming the cathode-electrolyte interphase (CEI), further verified via X-ray photoelectron spectroscopy and AIMD. Besides being a charge carrier and CEI composer, LiFSI mediates the PS generation processes in SPAN electrochemical lithiation. Analysis of AIMD trajectories during progressive lithiation reveals that, compared to carbonates, ether solvents enable stronger solvation and chemical stabilization for both salt and SPAN structures. Differentiated CEI formation and electrochemical lithiation decomposition pathways and products are profoundly associated with the intrinsic nature of lithium bonding with oxygen and sulfur.

4.
Adv Mater ; 36(13): e2308380, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134206

RESUMO

Protonation of oxide cathodes triggers surface transition metal dissolution and accelerates the performance degradation of Li-ion batteries. While strategies are developed to improve cathode material surface stability, little is known about the effects of protonation on bulk phase transitions in these cathode materials or their sodium-ion battery counterparts. Here, using NaNiO2 in electrolytes with different proton-generating levels as model systems, a holistic picture of the effect of incorporated protons is presented. Protonation of lattice oxygens stimulate transition metal migration to the alkaline layer and accelerates layered-rock-salt phase transition, which leads to bulk structure disintegration and anisotropic surface reconstruction layers formation. A cathode that undergoes severe protonation reactions attains a porous architecture corresponding to its multifold performance fade. This work reveals that interactions between electrolyte and cathode that result in protonation can dominate the structural reversibility/stability of bulk cathodes, and the insight sheds light for the development of future batteries.

5.
Nat Commun ; 14(1): 6823, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884517

RESUMO

Due to its high energy density, lithium metal is a promising electrode for future energy storage. However, its practical capacity, cyclability and safety heavily depend on controlling its reactivity in contact with liquid electrolytes, which leads to the formation of a solid electrolyte interphase (SEI). In particular, there is a lack of fundamental mechanistic understanding of how the electrolyte composition impacts the SEI formation and its governing processes. Here, we present an in-depth model-based analysis of the initial SEI formation on lithium metal in a carbonate-based electrolyte. Thereby we reach for significantly larger length and time scales than comparable molecular dynamic studies. Our multiscale kinetic Monte Carlo/continuum model shows a layered, mostly inorganic SEI consisting of LiF on top of Li2CO3 and Li after 1 µs. Its formation is traced back to a complex interplay of various electrolyte and salt decomposition processes. We further reveal that low local Li+ concentrations result in a more mosaic-like, partly organic SEI and that a faster passivation of the lithium metal surface can be achieved by increasing the salt concentration. Based on this we suggest design strategies for SEI on lithium metal and make an important step towards knowledge-driven SEI engineering.

6.
Phys Chem Chem Phys ; 25(38): 26316-26326, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747693

RESUMO

Sodium metal is a promising anode material for room-temperature sodium sulfur batteries. Due to its high reactivity, typical liquid electrolytes (e.g. carbonate-based solvents and a Na salt) can undergo reduction to form a solid electrolyte interphase (SEI) layer, with inorganic components such as Na2CO3, Na2O, and NaOH, covering the anode surface along with other SEI organic products. One of the challenges is to understand the effect of the SEI film on the decomposition of soluble sodium polysulfide molecules (e.g., Na2S8) upon shuttling from the cathode to anode during battery cycling. Here, we use ab initio molecular dynamics (AIMD) simulations to study the role of an inorganic SEI used as a model passivation layer in polysulfide decomposition. Compared to other film chemistries, it is found that the Na2CO3 film can suppress decomposition with the slowest reduction rate and the smallest amount of charge transfer towards Na2S8. The Na2CO3 film can maintain its structural properties during the simulations. In contrast, Na2O and NaOH allow some decomposed polysulfide fragments to be inserted into the SEI layer. Moreover, the decomposition of Na2S8 on both Na2O and NaOH SEI layers is more reactive with more charge transfer to Na2S8 when compared to that of Na2CO3. Thus, the ability of the SEI to suppress polysulfide decomposition is in the order: Na2CO3 > NaOH ∼ Na2O. Analyses of the density of states reveal that the Na2S8 molecule receives electrons from the Na metal directly in the presence of n-type semiconductor films of Na2CO3 and NaOH, while the charge migration behavior is different in a p-type semiconductor Na2O with the SEI film donating its electrons to the polysulfide solely. Thus, this work adds new insights into charge transfer behavior of inorganic thin film SEIs that could be present at the initial stages of SEI formation.

7.
J Chem Phys ; 158(12): 124706, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003762

RESUMO

Room-temperature sodium-sulfur batteries are promising next-generation energy storage alternatives for electric vehicles and large-scale applications. However, they still suffer from critical issues such as polysulfide shuttling, which inhibit them from commercialization. In this work, using first-principles methods, we investigated the cluster formation of soluble Na2S8 molecules, the reductive decomposition of ethylene carbonate (EC) and propylene carbonate (PC), and the role of fluoroethylene carbonate (FEC) additive in the solid electrolyte interphase formation on the Na anode. The clustering of Na2S8 in an EC solvent is found to be more favorable than in a PC solvent. In the presence of an electron-rich Na (001) surface, EC decomposition undergoes a two-electron transfer reaction with a barrier of 0.19 eV for a ring-opening process, whereas PC decomposition is difficult on the same surface. Although the reaction kinetics of an FEC ring opening in the EC and PC solvents are quite similar, the reaction mechanisms of the open FEC are found to be different in each solvent, although both lead to the production of NaF on the surface. The thick NaF layers reduce the extent of charge transfer to Na2S8 at the anode/electrolyte interface, thus decelerating the Na2S8 decomposition reaction. Our results provide an atomistic insight into the interfacial phenomena between the Na-metal anode surface and electrolyte media.

8.
Chem Mater ; 35(17): 7175-7188, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-38357226

RESUMO

The 5/6s2 lone-pair electrons of p-block cations in their lower oxidation states are a versatile electronic and geometric structure motif that can underpin lattice anharmonicity and often engender electronic and structural instabilities that underpin the function of active elements in nonlinear optics, thermochromics, thermoelectrics, neuromorphic computing, and photocatalysis. In contrast to periodic solids where lone-pair-bearing cations are part of the structural framework, installing lone-pair-bearing cations in the interstitial sites of intercalation hosts provides a means of a systematically modulating electronic structure through the choice of the group and the period of the inserted cation while preserving the overall framework connectivity. The extent of stereochemical activity and the energy positioning of lone-pair-derived mid-gap states depend on the cation identity, stoichiometry, and strength of anion hybridization. V2O5 polymorphs are versatile insertion hosts that can accommodate a broad range of s-, p-, and d-block cations. However, the insertion of lone-pair-bearing cations remains largely underexplored. In this article, we examine the implications of varying the 6s2 cations situated in interlayer sites between condensed [V4O10]n double layers. Systematic modulations of lattice distortions, electronic structure, and magnetic ordering are observed with increasing strength of stereochemical activity from group 12 to group 14 cations. We compare and contrast p-block-layered MxV2O5 (M = Hg, Tl, and Pb) compounds and map the significance of local off-centering arising from the stereochemical activity of lone-pair cations to the emergence of filled antibonding lone-pair 6s2-O 2p-hybridized mid-gap states mediated by second-order Jahn-Teller distortions. Crystallographic studies of cation coordination environments and the resulting modulation of V-V interactions have been used in conjunction with variable-energy hard X-ray photoelectron spectroscopy measurements, first-principles electronic structure calculations, and crystal orbital Hamilton population analyses to decipher the origins of stereochemical activity. Magnetic susceptibility measurements reveal antiferromagnetic signatures for all the three compounds. However, the differences in V-V interactions significantly affect the energy balance of the superexchange interactions, resulting in an ordering temperature of 160 and 260 K for Hg0.5V2O5 and δ-Tl0.5V2O5, respectively, as compared to 7 K for δ-Pb0.5V2O5. In δ-Pb0.5V2O5, the strong stereochemical activity of electron lone pairs and the resulting electrostatic repulsions enforce superlattice ordering, which strongly modifies the electronic localization patterns along the [V4O10] slabs, resulting in disrupted magnetic ordering and an anomalously low ordering temperature. The results demonstrate a versatile strategy for toggling the stereochemical activity of electron lone pairs to modify the electronic structure near the Fermi level and to mediate superexchange interactions.

9.
Nat Energy ; 8(12): 1345-1354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38249622

RESUMO

The solid-electrolyte interphase (SEI) critically governs the performance of rechargeable batteries. An ideal SEI is expected to be electrically insulative to prevent persistently parasitic reactions between the electrode and the electrolyte and ionically conductive to facilitate Faradaic reactions of the electrode. However, the true nature of the electrical properties of the SEI remains hitherto unclear due to the lack of a direct characterization method. Here we use in situ bias transmission electron microscopy to directly measure the electrical properties of SEIs formed on copper and lithium substrates. We reveal that SEIs show a voltage-dependent differential conductance. A higher rate of differential conductance induces a thicker SEI with an intricate topographic feature, leading to an inferior Coulombic efficiency and cycling stability in Li∣∣Cu and Li∣∣LiNi0.8Mn0.1Co0.1O2 cells. Our work provides insight into the targeted design of the SEI with desired characteristics towards better battery performance.

10.
J Phys Chem C Nanomater Interfaces ; 127(4): 1744-1751, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38333544

RESUMO

Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.

11.
ACS Appl Mater Interfaces ; 14(51): 56758-56766, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36521001

RESUMO

Lithium metal is one of the best anode candidates for next-generation batteries. However, there are still many unknowns regarding the structure and properties of the solid electrolyte interphase (SEI) formed due to electron transfer reactions between the Li metal surface and the electrolyte. In addition, because of the difficulties to study amorphous and dynamic phases and interphases, there are many questions about the ion diffusion mechanism through complex multicomponent materials and interphases. In this study, using first-principles theory and computation, we focus on developing a better understanding of the ion motion mechanisms in the vicinity of a SEI formed when a seed Li2O or LiOH cluster nucleates on the Li metal surface. We study the role of charge transfer at the interface between charged surfaces and the electrolyte, and we investigate the evolution of inhomogeneous Li metal deposits present in the neighborhood of the SEI nuclei, aiming to fundamentally understand how these events modify the ion transport through complex electrochemically active materials.

12.
Phys Chem Chem Phys ; 24(39): 24116-24122, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178263

RESUMO

Neuromorphic computing requires materials able to yield electronic switching behavior in response to external stimuli. Transition-metal dichalcogenides surfaces covered by partial or full monolayers of molecular species have shown promise due to their potential for tunable interfacial charge transfer. Here, we demonstrate a class of molecules able to position MoS2 surfaces on the cusp of electronic instabilities. Density functional theory (DFT) calculations and ab initio molecular dynamics simulations are used to study the interaction of four reduced pyridinium-derived pi-conjugated molecules with the pristine basal planes of MoS2, by exploring the dynamical evolution of the system at room temperature with regards to the effective band gap, radius of gyration (rog), and charge transfer. Computed rog profiles show that low concentrations of small reduced methyl viologen molecules have high mobilities on top of the surface of the basal plane at room temperature leading to unstable surface deposition, whereas a full monolayer of larger fused-ring molecules deposited on the basal surface shows greater thermal stability. DFT analyses show these larger reduced pyridinium derivatives promote n-type doping on the basal plane due to a built-in electric field, which can be systematically tuned to induce a switching effect, opening and closing a bandgap and providing a fundamental means of driving electronic instabilities needed for emulating neuronal functionality.


Assuntos
Molibdênio , Paraquat , Eletrônica , Simulação de Dinâmica Molecular , Software
13.
Nanoscale ; 14(13): 5068-5078, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35293922

RESUMO

MXenes have shown great promise as electrocatalysts for the hydrogen evolution reaction (HER), but their mechanism is still poorly understood. Currently, the benchmark Ti3C2 MXene suffers from a large overpotential. In order to reduce this overpotential, modifications must be made to the structure to increase the reaction rate of the H+/e- coupled transfer steps. These modifications heavily depend on understanding the HER mechanism. To remedy this, in situ/operando Raman spectroelectrochemistry combined with density functional theory (DFT) calculations are utilized to probe the HER mechanism of the Ti3C2 MXene catalyst in aqueous media. In acidic electrolytes, the -O- termination groups are protonated to form Ti-OH bonds, followed by protonation of the adjacent Ti site, leading to H2 formation. DFT calculations show that the large overpotential is due to the lack of an optimum balance between O and Ti sites. In neutral electrolytes, H2O reduction occurs on the surface and leads to surface protonation, followed by H2 formation. This results in an overcharging of the structure that leads to the observed large HER overpotential. This study provides new insights into the HER mechanisms of MXene catalysts and a pathway forward to design efficient and cost-effective catalysts for HER and related electrochemical energy conversion systems.

14.
ACS Appl Mater Interfaces ; 14(2): 2817-2824, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994191

RESUMO

The products of solvent polymerization and degradation are crucial components of the Li-metal battery solid-electrolyte interphase. However, in-depth mechanistic studies of these reactions are still scarce. Here, we model the polymerization of common lithium battery electrolyte solvents─ethylene carbonate (EC) and vinylene carbonate (VC)─near the anode surface. Being consistent with the molecular calculation, ab initio molecular dynamic (AIMD) simulations reveal fast solvent decompositions upon contact with the Li anode. Additionally, we assessed the thermochemical impacts of decarboxylation reactions as well as the lithium bonding with reaction intermediates. In both EC and VC polymerization pathways, lithium bonding demonstrated profound catalytic effects while different degrees of decarboxylation were observed. The VC polymerization pathways with and without ring-opening events were evaluated systematically, and the latter one which leads to poly(VC) formation was proven to dominate the oligomerization process. Both the decomposition and polymerization reactivities of VC are found to be higher than EC, while the cross-coupling between EC and VC has an even lower-energy barrier. These findings are in good agreement with experimental evidence and explanatory toward the enhanced performance of VC-added lithium-metal batteries.

15.
J Chem Phys ; 155(12): 124701, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598576

RESUMO

The solid-electrolyte interphase (SEI) layer is a critical constituent of battery technology, which incorporates the use of lithium metals. Since the formation of the SEI is difficult to avoid, the engineering and harnessing of the SEI are absolutely critical to advancing energy storage. One problem is that much fundamental information about SEI properties is lacking due to the difficulty in probing a chemically complex interfacial system. One such property that is currently unknown is the dissolution of the SEI. This process can have significant effects on the stability of the SEI, which is critical to battery performance but is difficult to probe experimentally. Here, we report the use of ab initio computational chemistry simulations to probe the solution state properties of SEI components LiF, Li2O, LiOH, and Li2CO3 in order to study their dissolution and other solution-based characteristics. Ab initio molecular dynamics was used to study the solvation structures of the SEI with a combination of radial distribution functions, discrete solvation structure maps, and vibrational density of states, which allows for the determination of free energies. From the change in free energy of dissolution, we determined that LiOH is the most likely component to dissolve in the electrolyte followed by LiF, Li2CO3, and Li2O although none were favored thermodynamically. This indicates that dissolution is not probable, but Li2O would make the most stable SEI with regard to dissolution in the electrolyte.

16.
J Phys Chem Lett ; 12(38): 9360-9367, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34550703

RESUMO

Delineating intricate interactions between highly reactive Li-metal electrodes and the diverse constituents of battery electrolytes has been a long-standing scientific challenge in materials design for advanced energy storage devices. Here, we isolated lithium polysulfide anions (LiS4-) from an electrolyte solution based on their mass-to-charge ratio and deposited them on Li-metal electrodes under clean vacuum conditions using ion soft landing (ISL), a highly controlled interface preparation technique. The molecular level precision in the construction of these model interfaces with ISL, coupled with in situ X-ray photoelectron spectroscopy and ab initio theoretical calculations, allowed us to obtain unprecedented insight into the parasitic reactions of well-defined polysulfides on Li-metal electrodes. Our study revealed that the oxide-rich surface layer, which is amenable to direct electron exchange, drives multielectron sulfur oxidation (S0 → S6+) processes. Our results have substantial implications for the rational design of future Li-S batteries with improved efficiency and durability.

17.
Angew Chem Int Ed Engl ; 60(34): 18845-18851, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34196094

RESUMO

Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5 (OH)8 Cl2 ⋅H2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5 (OH)8 Cl2 ⋅H2 O top-layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm-1 even at -70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl- . The eutectic electrolyte enables Zn∥Ti half-cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm-2 . Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at -50 °C, and retain ≈30 % capacity at -70 °C of that at 20 °C.

18.
Chem Commun (Camb) ; 57(50): 6189-6192, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34048526

RESUMO

Electrolyte structure and ion solvation dynamics determine ionic conductivities, and ion (de)solvation processes dominate interfacial chemistry and electrodeposition barriers. We elucidate electrolyte effects facilitating or impeding Li+ diffusion and deposition, and evaluate structural and energetic changes during the solvation complex pathway from the bulk to the anode surface.

19.
J Chem Phys ; 154(10): 104702, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722005

RESUMO

Localized high concentration electrolytes have been proposed as an effective route to construct stable solid-electrolyte interphase (SEI) layers near Li-metal anodes. However, there is still a limited understanding of the decomposition mechanisms of electrolyte components during SEI formation. In this work, we investigate reactivities of lithium bis(fluorosulfonyl)imide (LiFSI, salt), 1,2-dimethoxyethane (DME, solvent), and tris(2,2,2-trifluoroethyl)orthoformate (TFEO, diluent) species in DME + TFEO mixed solvents and 1M LiFSI/DME/TFEO solutions. By supplying an excess of electrons into the simulation cell, LiFSI is initially reduced via a four-electron charge transfer reaction yielding F- and N(SO2)2 3-. The local solvation environment has little effect on the subsequent TFEO reaction, which typically requires 6 |e| to decompose into F-, HCOO-, CH2CF-, and -OCH2CF3. Besides, the TFEO dehydrogenation reaction mechanism under an attack of anions is also identified. Unlike salt and diluent, DME shows good stability with any excess of electrons. The energetics of most relevant reactions are characterized. Most reactions are thermodynamically favorable with low activation barriers.

20.
ACS Appl Mater Interfaces ; 13(1): 491-502, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33377389

RESUMO

Like no other sulfur host material, polyacrylonitrile-derived sulfurized carbon (SPAN) promises improved electrochemical performance for lithium-sulfur batteries, based on its compatibility with carbonate solvents and ability to prevent self-discharge and shuttle effect. However, a complete understanding of the SPAN's lithiation mechanism is still missing because its structural features vary widely with synthesis conditions, and its electrochemical performance deviates from elemental sulfur. This study continues our research on the elucidation of the SPAN's structural characteristics and lithiation mechanisms via computational approaches. Our models reproduce most experimental data regarding carbon's graphitization level and conjugated ordering, sulfur-carbon covalent bonding, sulfur loading, and elemental composition. Our simulations emulate the discharge voltage observed in experiments for the first discharge, which reveals that sulfur follows multiple reduction pathways based on its interaction with the carbon backbone. Sulfur reduction takes place above 1.0 V vs Li/Li+ mostly in the SPAN-like material, with no long-chain lithium polysulfide formation. Below 1.0 V vs Li/Li+, the backbone's electrochemical activity occurs via multiple C-Li and N-Li interactions, mostly with edge carbon atoms and pyridinic nitrogen. Moreover, we identify Li+ binding sites throughout the graphitized backbone that might lead to prohibited energy costs for Li+ deintercalation, which may explain the irreversible capacity loss between the first and second discharges. This work improves understanding of lithiation mechanisms in sulfurized carbon, which is useful for rationally designing SPAN synthesis pathways tailored to increase sulfur loading and enhanced electrochemical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...