Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1869(8): 140662, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33887466

RESUMO

Scytalidium catalase is a homotetramer including heme d in each subunit. Its primary function is the dismutation of H2O2 to water and oxygen, but it is also able to oxidase various small organic compounds including catechol and phenol. The crystal structure of Scytalidium catalase reveals the presence of three linked channels providing access to the exterior like other catalases reported so far. The function of these channels has been extensively studied, revealing the possible routes for substrate flow and product release. In this report, we have focussed on the semi-conserved residue Val228, located near to the vinyl groups of the heme at the opening of the lateral channel. Its replacement with Ala, Ser, Gly, Cys, Phe and Ile were tested. We observed a significant decrease in catalytic efficiency in all mutants with the exception of a remarkable increase in oxidase activity when Val228 was mutated to either Ala, Gly or Ser. The reduced catalytic efficiencies are characterized in terms of the restriction of hydrogen peroxide as electron acceptor in the active centre resulting from the opening of lateral channel inlet by introducing the smaller side chain residues. On the other hand, the increased oxidase activity is explained by allowing the suitable electron donor to approach more closely to the heme. The crystal structures of V228C and V228I were determined at 1.41 and 1.47 Å resolution, respectively. The lateral channels of the V228C and V228I presented a broadly identical chain of arranged waters to that observed for wild-type enzyme.


Assuntos
Catalase/genética , Heme/química , Sordariales/enzimologia , Sordariales/genética , Ascomicetos/enzimologia , Ascomicetos/genética , Catalase/química , Catalase/metabolismo , Catálise , Domínio Catalítico , Heme/análogos & derivados , Peróxido de Hidrogênio/química , Modelos Moleculares , Sordariales/metabolismo
2.
Acta Crystallogr D Struct Biol ; 74(Pt 10): 979-985, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289408

RESUMO

The catalase from Scytalidium thermophilum is a homotetramer containing a heme d in each active site. Although the enzyme has a classical monofunctional catalase fold, it also possesses oxidase activity towards a number of small organics, including catechol and phenol. In order to further investigate this, the crystal structure of the complex of the catalase with the classical catalase inhibitor 3-amino-1,2,4-triazole (3TR) was determined at 1.95 Šresolution. Surprisingly, no binding to the heme site was observed; instead, 3TR occupies a binding site corresponding to the NADPH-binding pocket in mammalian catalases at the entrance to a lateral channel leading to the heme. Kinetic analysis of site-directed mutants supports the assignment of this pocket as the binding site for oxidase substrates.


Assuntos
Sítios de Ligação , Catalase/química , Proteínas Fúngicas/química , Fungos/enzimologia , Amitrol (Herbicida)/metabolismo , Catalase/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Heme/análogos & derivados , Heme/metabolismo , NADP/metabolismo , Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA