Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931043

RESUMO

Recent focus has been given to nanoparticles as an alternative fungicidal compound instead of chemical ones. More environmentally friendly ways of synthesis are the highest priority regarding the antifungal agents in the agriculture sector. Therefore, in this research, hyssop (H. officinalis) and sage (S. officinalis) aqueous extracts were prepared and used as a reducing source in the green synthesis of silver nanoparticles (AgNPs). Aqueous extracts and green synthesized AgNPs were examined for phytochemical composition and antioxidant capacity. Hyssop and sage extracts based AgNPs were analyzed using UV-vis spectrometry, SEM-EDS, and TEM-EDS. Antifungal activity against Fusarium spp. isolates collected from different infected crops was determined. Fusarium spp. isolates from strawberry, asparagus, pea, carrot, wheat, and rapeseed samples identified at the molecular level by translation elongation factor 1-alpha (TEF1α) gene amplification and sequencing. Green synthesized AgNPs had lower phytochemical content, however higher antioxidant activity compared to pure extracts. Both hyssop and sage extracts are suitable reducing agents for AgNPs formation, and sage extract results in larger particle size. Aqueous hyssop extract had higher antifungal activity than aqueous sage extract. However, a 10% concentration of whole sage extract based AgNPs solution, added to the PDA medium, and a 5% concentration of hyssop extract based AgNPs inhibited Fusarium spp. the most. F. proliferatum was the most sensitive to all treatments among the other fungi.

2.
Gels ; 10(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920937

RESUMO

Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the potential of donkey gelatin and keratin for blending with natural bioactive extracts such as sumac, curcumin, and oak acorn to fabricate antioxidant and antimicrobial nanofibers with accelerated wound healing processes. The fabricated nanofibers possess good in vitro biocompatibility, except for the sumac-based donkey nanofibers, where cell viability significantly dropped to 56.25% (p < 0.05 compared to non-treated cells). The nanofiber dimensions showed structural similarities to human extracellular matrix components, providing an ideal microenvironment for tissue regeneration. The donkey nanofiber-based sumac and curcumin extracts presented a higher dissolution in the first 10 min (74% and 72%). Curcumin extract showed similar antimicrobial and antifungal performances to rivanol, while acorn and sumac extracts demonstrated similar values to each other. In vitro tests performed on murine fibroblast cells demonstrated high migration rates of 89% and 85% after 24 h in the case of acorn and curcumin nanofibers, respectively, underscoring the potential of these nanofibers as versatile platforms for advanced wound care applications.

3.
Antioxidants (Basel) ; 13(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38539905

RESUMO

Variations between fruit cultivars can significantly impact their biochemical composition. The present research examined the variability in the qualitative and quantitative content of phenolic compounds in berry extracts of Actinidia kolomikta and Actinidia arguta cultivars. Additionally, antioxidant activities of berry extracts were evaluated. The total phenolic, flavonoid, proanthocyanidin contents and hydroxycinnamic acid derivatives were determined using the appropriate methodologies. The average amount of phenolic compounds in A. kolomikta berries (177.80 mg/g) was three times higher than that of A. arguta (54.45 mg/g). Our findings revealed that berries of A. kolomikta and A. arguta accumulated, on average, 1.58 RE/g DW (rutin equivalent/g dry weight) and 0.615 mg RE/g DW of total flavonoids, 1439.31 mg EE/g DW (epicatechin equivalent/g dry weight) and 439.97 mg EE/g DW of proanthocyanidins, and 23.51 mg CAE/g DW (chlorogenic acid equivalent/g dry weight) and 5.65 mg CAE/g DW of hydroxycinnamic acid derivatives, respectively. The cultivars of both species were characterized by higher antioxidant activity of total phenolic compounds determined using CUPRAC and FRAP methods compared to the ABTS•+ method. The variability in phenolic compounds' qualitative and quantitative content in tested berry extracts was evaluated by applying ultra-high performance liquid chromatography (UHPLC) coupled to mass spectrometry in tandem with electrospray ionization. Significant intraspecific differences in the amounts of total phenolic compounds, total flavonoid compounds, proanthocyanidins, and hydroxycinnamic acid derivatives were determined among cultivars. Four phenolic acids, eight flavonols, two flavones, and five flavon-3-ols were identified in the berry extracts.

4.
Polymers (Basel) ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337206

RESUMO

Antimicrobial natural polymer film with silver nanoparticles (AgNPs) biosynthesized using aqueous plant root extracts as reducing capping agents and for film formatting show extensive applicability for pathogenic microorganism problems. The formation of AgNPs was confirmed by transmission electron microscopy (TEM) and scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) techniques. The antimicrobial activity of biofilm with green AgNPs was analysed by inhibiting the growth of Gram-negative and Gram-positive bacteria culture using the Kirby-Bauer disk diffusion susceptibility test. Total phenolic content and antioxidant activity were slightly higher in aqueous extracts of Sym. Radix than in Sym. Radix/AgNPs. The antimicrobial effect of polymer film/AgNPs against selected test bacteria cultures was substantially more robust than with pure film. Pictures of AgNPs obtained by TEM revealed the presence of spherical-shaped nano-objects with an average size 27.45 nm. SEM-EDS studies confirmed the uniform distribution of metal nanoparticles throughout the biopolymeric matrix. Morphological studies of the surface showed that the obtained surface of the films was even, without holes or other relief irregularities. These apparent Symphyti radix polymer film/AgNPs' biological functions could provide a platform for fighting pathogenic bacteria in the era of multi-drug resistance.

5.
Microorganisms ; 11(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37764024

RESUMO

Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could serve as a natural remedy in various applications. In comparison, numerous techniques, such as conventional and high-pressure techniques, are available for extracting the bioactive fractions from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high concentration of bioactive compounds. In order to determine the optimal conditions for EAE, the study employed a central composite design and response surface methodology to analyze the effects of four independent factors (pH, temperature, extraction time, and enzyme concentration) on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction, temperature 45 °C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM). This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising natural source of bioactive compounds for various applications, such as nutraceuticals, functional foods, and high-value products.

6.
Insects ; 14(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36975906

RESUMO

Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.

7.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431804

RESUMO

Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approach to the biosynthesis of metallic NPs using Calendula officinalis (Calendula) and Hyssopus officinalis (Hyssopus) aqueous extracts. The formation of AgNPs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) techniques. The effectiveness of biosynthesized AgNPs in quenching free radicals and inhibiting the growth of Gram-positive and Gram-negative microorganisms was supported by in vitro antioxidant activity assay methods and using the Kirby-Bauer disk diffusion susceptibility test, respectively. The elucidated antimicrobial and antioxidative activities of medical plant extracts were compared with data from the engineered biosynthetic AgNPs. The antimicrobial effect of engineered AgNPs against selected test cultures was found to be substantially stronger than for plant extracts used for their synthesis. The analysis of AgNPs by TEM revealed the presence of spherical-shaped nano-objects. The size distribution of AgNPs was found to be plant-type-dependent. The smaller AgNPs were obtained with Hyssopus extract (with a size range of 16.8 ± 5.8 nm compared to 35.7 ± 4.8 nm from Calendula AgNPs). The AgNPs' presumably inherited biological functions of Hyssopus and Calendula medical plants can provide a platform to combat pathogenic bacteria in the era of multi-drug resistance.


Assuntos
Calendula , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antioxidantes/química , Prata/química , Hyssopus , Nanopartículas Metálicas/química , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bactérias
8.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890467

RESUMO

Enzyme-assisted extraction is a valuable tool for mild and environmentally-friendly extraction conditions to release bioactive compounds and sugars, essential for silver nanoparticle (AgNP) green synthesis as capping and reducing agents. In this research, plant and fungal kingdoms were selected to obtain the enzyme-assisted extracts, using green synthesized AgNPs. For the synthesis, pseudo-cereal Fagopyrum esculentum (F. esculentum) and lichen Certaria islandica (C. islandica) extracts were used as environmentally-friendly agents under heating in an aqueous solution. Raw and enzyme-assisted extracts of AgNPs were characterized by physicochemical, phytochemical, and morphological characteristics through scanning and transmission electron microscopy (SEM and TEM), as well as Fourier transform infrared spectroscopy (FTIR). The synthesized nanoparticles were spherical in shape and well dispersed, with average sizes ranging from 10 to 50 nm. This study determined the total phenolic content (TPC) and in vitro antioxidant activity in both materials by applying standard methods. The results showed that TPC, ABTS•+, FRAP, and DPPH• radical scavenging activities varied greatly in samples. The AgNPs derived from enzymatic hydrolyzed aqueous extracts C. islandica and F. esculentum exhibited higher antibacterial activity against the tested bacterial pathogens than their respective crude extracts. Results indicate that the extracts' biomolecules covering the AgNPs may enhance the biological activity of silver nanoparticles and enzyme assistance as a sustainable additive to technological processes to achieve higher yields and necessary media components.

9.
Foods ; 11(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35885298

RESUMO

Avena sativa (A. sativa) oats have recently made a comeback as suitable alternative raw materials for dairy substitutes due to their functional properties. Amylolytic and cellulolytic enzyme-assisted modifications of oats produce new products that are more appealing to consumers. However, the biochemical and functional alteration of products and extracts requires careful selection of raw materials, enzyme cocktails, and technological aspects. This study compares the biochemical composition of different A. sativa enzyme-assisted water extracts and evaluates their microbial growth using spontaneous fermentation and the antimicrobial properties of the ferment extracts. Fibre content, total phenolic content, and antioxidant activity were evaluated using traditional methodologies. The degradation of A. sativa flour was captured using scanning electron microscopy (SEM); moreover, sugar and oligosaccharide alteration were identified using HPLC and HPLC-SEC after INFOGEST in vitro digestion (IVD). Additionally, taste differentiation was performed using an electronic tongue with principal component analysis. The oat liquid extracts were continuously fermented using two ancient fermentation starters, birch sap and Tibetan kefir grains. Both starters contain lactic acid bacteria (LAB), which has major potential for use in bio-preservation. In fermented extracts, antimicrobial properties against Gram-positive Staphylococcus aureus and group A streptococci as well as Gram-negative opportunistic bacteria such as Escherichia coli and Pseudomonas aeruginosa were also determined. SEM images confirmed the successful incorporation of enzymes into the oat flour. The results indicate that using enzyme-assisted extraction significantly increased TPC and antioxidant activity in both the extract and residues. Additionally, carbohydrates with a molecular mass (MM) of over 70,000 kDa were reduced to 7000 kDa and lower after the incorporation of amylolytic and cellulolytic enzymes. The MM impacted the variation in microbial fermentation, which demonstrated favourable antimicrobial properties. The results demonstrated promising applications for developing functional products and components using bioprocessing as an innovative tool.

10.
Plants (Basel) ; 11(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807656

RESUMO

Plant primary and secondary metabolites are a significant source for many applications, including extractions of functional components, green synthesis development, and producing higher-added value products. However, in the variety of botanicals, Aralia cordata Thunb. plant is getting attention for its similarity to ginseng. This study comprehensively examines the biochemical and phytochemical profiles of different A. cordata morphological parts: root, stem, leaf, inflorescence, berry, and seed. Additionally, the establishment of total phenolic content and quantitative analysis of powerful antioxidants such as chlorophyll, carotenoids (zeaxanthin, lutein, and ß-carotene), proanthocyanidins, and anthocyanins content were evaluated. The results indicated that A. cordata stem and berries are an excellent source of anthocyanins in the range from 18.27 to 78.54 mg/100 g DW. Meanwhile, the antioxidant activity was evaluated using three different methods based on the capacity to scavenge: DPPH• scavenging capacity, ABTS•+ radical cation assay, and ferric reducing antioxidant power (FRAP) and ranged from 27 to 168 µmol TE/g DW, 8 to 117 µmol TE/g DW, and 18 to 157 µmol TE/g DW, respectively. This study proposes a novel competitive plant for many health-promoting applications in the nutraceutical, pharmaceutical, material, and food industries.

11.
Nanomaterials (Basel) ; 12(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683697

RESUMO

Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.

12.
Plants (Basel) ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448813

RESUMO

Silver nanoparticles (AgNPs) biosynthesized using plant extracts as reducing and capping agents show multiple possibilities for solving various biological problems. The aim of this study was to expand the boundaries of AgNPs using a novel low toxicity and production cost phytochemical method for the biosynthesis of nanoparticles from Eucalyptus globulus and Salvia officinalis aqueous leaf extracts. Biosynthesized AgNPs were characterized by various methods (ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR) spectroscopy with horizontal attenuated total reflectance (HART), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS)). The determined antioxidative and antimicrobial activity of plant extracts was compared with the activity of the AgNPs. The UV-vis spectral analysis demonstrated the absorption peaks at 408 and 438 nm, which confirmed the synthesis of stable AgNPs from E. globulus and S. officinalis, respectively. FTIR-HART results suggested strong capping of phytochemicals on AgNPs. TEM results show mainly spherical-shaped AgNPs, whose size distribution depends on the plant leaf extract type; the smaller AgNPs were obtained with E. globulus extract (with size range of 17.5 ± 5.89 nm compared to 34.3 ± 7.76 nm from S. officinalis AgNPs). The in vitro antioxidant activity evaluated by radical scavenging assays and the reduction activity method clearly demonstrated that both the plant extracts and AgNPs showed prominent antioxidant properties. In addition, AgNPs show much stronger antimicrobial activity against broad spectrum of Gram-negative and Gram-positive bacteria strains than the plant extracts used for their synthesis.

13.
Plants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34961038

RESUMO

Optimization of the extraction procedure using a multienzymes cocktail for common buckwheat (Fagopyrum esculentum M.) is important due to the yield, fermentable sugars, oligosaccharides and bioactive compounds for creating higher added value products. This study was undertaken to find out the optimum multienzymes-water extraction on yield and total phenolic compounds for common Buckwheat using response surface methodology (RSM). Three independent variables, time (2, 13, and 24 h), temperature (60 °C, 70 °C, 80 °C), and non-starch polysaccharide (NSP) enzymes mixture (0.10, 0.55, and 1.00 mL), were analyzed to optimize the response variables. NSP hydrolyzing enzymes, cellulase, xylanase, and ß-glucanase, were produced by Trichoderma reesei. Estimated optimum conditions for F. esculentum were found: time-2 h, temperature-65 °C, and cellulase activity-8.6 CellG5 Units/mL. Different optimization run samples were collected and lyophilized for further analysis until the hydrophilic property using the water contact angle methodology and rutin content using HPLC was determined. Results indicated NSP enzymes activity did not differ between water contact angles after 13 h of enzymatic water extraction. However, longer fermentation time (24 h) decreased static water contact angle by approximately 3-7° for lyophilized water extract and 2-7° for solid fraction after fermentation. It implies enzymatic hydrolysis during water extraction increased hydrophilic properties in solid fraction and decreased hydrophilicity in water fraction due to the enzymes cleaved glycosidic bonds releasing water-soluble compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...