Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932971

RESUMO

In response to the pressing challenges of the ongoing biodiversity crisis, the protection of endangered species and their habitats, as well as the monitoring of invasive species are crucial. Habitat suitability modeling (HSM) is often treated as the silver bullet to address these challenges, commonly relying on generic variables sourced from widely available datasets. However, for species with high habitat requirements, or for modeling the suitability of habitats within the geographic range of a species, variables at a coarse level of detail may fall short. Consequently, there is potential value in considering the incorporation of more targeted data, which may extend beyond readily available land cover and climate datasets. In this study, we investigate the impact of incorporating targeted land cover variables (specifically tree species composition) and vertical structure information (derived from LiDAR data) on HSM outcomes for three forest specialist bat species (Barbastella barbastellus, Myotis bechsteinii, and Plecotus auritus) in Rhineland-Palatinate, Germany, compared to commonly utilized environmental variables, such as generic land-cover classifications (e.g., Corine Land Cover) and climate variables (e.g., Bioclim). The integration of targeted variables enhanced the performance of habitat suitability models for all three bat species. Furthermore, our results showed a high difference in the distribution maps that resulted from using different levels of detail in environmental variables. This underscores the importance of making the effort to generate the appropriate variables, rather than simply relying on commonly used ones, and the necessity of exercising caution when using habitat models as a tool to inform conservation strategies and spatial planning efforts.

2.
Sci Data ; 11(1): 473, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724591

RESUMO

The East African mountain ecosystems are facing increasing threats due to global change, putting their unique socio-ecological systems at risk. To monitor and understand these changes, researchers and stakeholders require accessible analysis-ready remote sensing data. Although satellite data is available for many applications, it often lacks accurate geometric orientation and has extensive cloud cover. This can generate misleading results and make it unreliable for time-series analysis. Therefore, it needs comprehensive processing before usage, which encompasses multi-step operations, requiring large computational and storage capacities, as well as expert knowledge. Here, we provide high-quality, atmospherically corrected, and cloud-free analysis-ready Sentinel-2 imagery for the Bale Mountains (Ethiopia), Mounts Kilimanjaro and Meru (Tanzania) ecosystems in East Africa. Our dataset ranges from 2017 to 2021 and is provided as monthly and annual aggregated products together with 24 spectral indices. Our dataset enables researchers and stakeholders to conduct immediate and impactful analyses. These applications can include vegetation mapping, wildlife habitat assessment, land cover change detection, ecosystem monitoring, and climate change research.


Assuntos
Ecossistema , Imagens de Satélites , Mudança Climática , Monitoramento Ambiental/métodos , Etiópia , Tecnologia de Sensoriamento Remoto , Tanzânia
3.
Glob Chang Biol ; 30(1): e17056, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273542

RESUMO

Ecosystem functions and services are severely threatened by unprecedented global loss in biodiversity. To counteract these trends, it is essential to develop systems to monitor changes in biodiversity for planning, evaluating, and implementing conservation and mitigation actions. However, the implementation of monitoring systems suffers from a trade-off between grain (i.e., the level of detail), extent (i.e., the number of study sites), and temporal repetition. Here, we present an applied and realized networked sensor system for integrated biodiversity monitoring in the Nature 4.0 project as a solution to these challenges, which considers plants and animals not only as targets of investigation, but also as parts of the modular sensor network by carrying sensors. Our networked sensor system consists of three main closely interlinked components with a modular structure: sensors, data transmission, and data storage, which are integrated into pipelines for automated biodiversity monitoring. We present our own real-world examples of applications, share our experiences in operating them, and provide our collected open data. Our flexible, low-cost, and open-source solutions can be applied for monitoring individual and multiple terrestrial plants and animals as well as their interactions. Ultimately, our system can also be applied to area-wide ecosystem mapping tasks, thereby providing an exemplary cost-efficient and powerful solution for biodiversity monitoring. Building upon our experiences in the Nature 4.0 project, we identified ten key challenges that need to be addressed to better understand and counteract the ongoing loss of biodiversity using networked sensor systems. To tackle these challenges, interdisciplinary collaboration, additional research, and practical solutions are necessary to enhance the capability and applicability of networked sensor systems for researchers and practitioners, ultimately further helping to ensure the sustainable management of ecosystems and the provision of ecosystem services.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Plantas
4.
Ecol Evol ; 13(10): e10635, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881225

RESUMO

Conventional practices in species distribution modeling lack predictive power when the spatial structure of data is not taken into account. However, choosing a modeling approach that accounts for overfitting during model training can improve predictive performance on spatially separated test data, leading to more reliable models. This study introduces spatialMaxent (https://github.com/envima/spatialMaxent), a software that combines state-of-the-art spatial modeling techniques with the popular species distribution modeling software Maxent. It includes forward-variable-selection, forward-feature-selection, and regularization-multiplier tuning based on spatial cross-validation, which enables addressing overfitting during model training by considering the impact of spatial dependency in the training data. We assessed the performance of spatialMaxent using the National Center for Ecological Analysis and Synthesis dataset, which contains over 200 anonymized species across six regions worldwide. Our results show that spatialMaxent outperforms both conventional Maxent and models optimized according to literature recommendations without using a spatial tuning strategy in 80 percent of the cases. spatialMaxent is user-friendly and easily accessible to researchers, government authorities, and conservation practitioners. Therefore, it has the potential to play an important role in addressing pressing challenges of biodiversity conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...