Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Exp Bot ; 75(9): 2631-2643, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38349339

RESUMO

Ascorbate is involved in numerous vital processes, in particular in response to abiotic but also biotic stresses whose frequency and amplitude increase with climate change. Ascorbate levels vary greatly depending on species, tissues, or stages of development, but also in response to stress. Since its discovery, the ascorbate biosynthetic pathway has been intensely studied and it appears that GDP-l-galactose phosphorylase (GGP) is the enzyme with the greatest role in the control of ascorbate biosynthesis. Like other enzymes of this pathway, its expression is induced by various environmental and also developmental factors. Although mRNAs encoding it are among the most abundant in the transcriptome, the protein is only present in very small quantities. In fact, GGP translation is repressed by a negative feedback mechanism involving a small open reading frame located upstream of the coding sequence (uORF). Moreover, its activity is inhibited by a PAS/LOV type photoreceptor, the action of which is counteracted by blue light. Consequently, this multi-level regulation of GGP would allow fine control of ascorbate synthesis. Indeed, experiments varying the expression of GGP have shown that it plays a central role in response to stress. This new understanding will be useful for developing varieties adapted to future environmental conditions.


Assuntos
Ácido Ascórbico , Monoéster Fosfórico Hidrolases , Ácido Ascórbico/biossíntese , Ácido Ascórbico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
2.
New Phytol ; 240(1): 242-257, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548068

RESUMO

The ascorbate-glutathione (ASC-GSH) cycle is at the heart of redox metabolism, linking the major redox buffers with central metabolism through the processing of reactive oxygen species (ROS) and pyridine nucleotide metabolism. Tomato fruit development is underpinned by changes in redox buffer contents and their associated enzyme capacities, but interactions between them remain unclear. Based on quantitative data obtained for the core redox metabolism, we built an enzyme-based kinetic model to calculate redox metabolite concentrations with their corresponding fluxes and control coefficients. Dynamic and associated regulations of the ASC-GSH cycle throughout the whole fruit development were analysed and pointed to a sequential metabolic control of redox fluxes by ASC synthesis, NAD(P)H and ROS availability depending on the developmental phase. Furthermore, we highlighted that monodehydroascorbate reductase and the availability of reducing power were found to be the main regulators of the redox state of ASC and GSH during fruit growth under optimal conditions. Our kinetic modelling approach indicated that tomato fruit development displayed growth phase-dependent redox metabolism linked with central metabolism via pyridine nucleotides and H2 O2 availability, while providing a new tool to the scientific community to investigate redox metabolism in fruits.


Assuntos
Solanum lycopersicum , Espécies Reativas de Oxigênio/metabolismo , Frutas , Oxirredução , Piridinas , Glutationa/metabolismo , Ácido Ascórbico
3.
Plant Cell ; 35(7): 2615-2634, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052931

RESUMO

Ascorbate (vitamin C) is an essential antioxidant in fresh fruits and vegetables. To gain insight into the regulation of ascorbate metabolism in plants, we studied mutant tomato plants (Solanum lycopersicum) that produce ascorbate-enriched fruits. The causal mutation, identified by a mapping-by-sequencing strategy, corresponded to a knock-out recessive mutation in a class of photoreceptor named PAS/LOV protein (PLP), which acts as a negative regulator of ascorbate biosynthesis. This trait was confirmed by CRISPR/Cas9 gene editing and further found in all plant organs, including fruit that accumulated 2 to 3 times more ascorbate than in the WT. The functional characterization revealed that PLP interacted with the 2 isoforms of GDP-L-galactose phosphorylase (GGP), known as the controlling step of the L-galactose pathway of ascorbate synthesis. The interaction with GGP occurred in the cytoplasm and the nucleus, but was abolished when PLP was truncated. These results were confirmed by a synthetic approach using an animal cell system, which additionally demonstrated that blue light modulated the PLP-GGP interaction. Assays performed in vitro with heterologously expressed GGP and PLP showed that PLP is a noncompetitive inhibitor of GGP that is inactivated after blue light exposure. This discovery provides a greater understanding of the light-dependent regulation of ascorbate metabolism in plants.


Assuntos
Antioxidantes , Galactose , Galactose/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico , Luz , Frutas/genética , Frutas/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol Biochem ; 185: 55-68, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661586

RESUMO

Mitochondria are the major organelles of energy production; however, active mitochondria can decline their energetic role and show a dysfunctional status. Mitochondrial dysfunction was induced by high non-physiological level of L-galactone-1,4-lactone (L-GalL), the precursor of ascorbate (AsA), in plant mitochondria. The dysfunction induced by L-GalL was associated with the fault in the mitochondrial electron partition and reactive oxygen species (ROS) over-production. Using mitochondria from RNAi-plant lines harbouring silenced L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activity, it was demonstrated that such dysfunction is dependent on this enzyme activity. The capacity of alternative respiration was strongly decreased by L-GalL, probably mediated by redox-inactivation of the alternative oxidase (AOX) enzyme. Although, alternative respiration was shown to be the key factor that helps support AsA synthesis in dysfunctional mitochondria. Experiments with respiratory inhibitors showed that ROS formation and mitochondrial dysfunction were more associated with the decline in the activities of COX (cytochrome oxidase) and particularly AOX than with the lower activities of respiratory complexes I and III. The application of high L-GalL concentrations induced proteomic changes that indicated alterations in proteins related to oxidative stress and energetic status. However, supra-optimal L-GalL concentration was not deleterious for plants. Instead, the L-GalLDH activity could be positive. Indeed, it was found that wild type plants performed better growth than L-GalLDH-RNAi plants in response to high non-physiological L-GalL concentrations.


Assuntos
Proteínas Mitocondriais , Proteômica , Respiração Celular , Lactonas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Plant Sci ; 322: 111348, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35750294

RESUMO

Increased synthesis of H2O2 is observed during the initiation of fruit ripening. However, its association with plant cell processes triggering the maturation of fruit has not yet been demonstrated. The aim of this work is to investigate whether H2O2 participates in the tomato ripening process and particularly through its association with the ethylene signaling pathway. The experiments were carried out with two ethyl methanesulfonate mutant lines of Micro-Tom tomato deficient in GDP-L-galactose phosphorylase activity and displaying lower ascorbic acid content than the corresponding parental genotype (i.e. wild type). Plants were subjected to a high irradiance (HI) treatment to stimulate H2O2 synthesis. HI treatment enhanced H2O2 production and reduced the timing of fruit ripening in both mutants and wild-type fruits. These results could be linked to an increase of the expression of H2O2-related genes and changes in the expression of ethylene-related genes. The fruit H2O2 production increased or decreased after applying the treatments that induced ethylene synthesis or blocked its action, respectively. The results presented in this work give an evidence of the association of redox and hormonal components during fruit ripening in which H2O2 participates downstream in the events regulated by ethylene.


Assuntos
Solanum lycopersicum , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Exp Bot ; 72(8): 3091-3107, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33530105

RESUMO

Ascorbate is a major antioxidant buffer in plants. Several approaches have been used to increase the ascorbate content of fruits and vegetables. Here, we combined forward genetics with mapping-by-sequencing approaches using an ethyl methanesulfonate (EMS)-mutagenized Micro-Tom population to identify putative regulators underlying a high-ascorbate phenotype in tomato fruits. Among the ascorbate-enriched mutants, the family with the highest fruit ascorbate level (P17C5, up to 5-fold wild-type level) had strongly impaired flower development and produced seedless fruit. Genetic characterization was performed by outcrossing P17C5 with cv. M82. We identified the mutation responsible for the ascorbate-enriched trait in a cis-acting upstream open reading frame (uORF) involved in the downstream regulation of GDP-l-galactose phosphorylase (GGP). Using a specific CRISPR strategy, we generated uORF-GGP1 mutants and confirmed the ascorbate-enriched phenotype. We further investigated the impact of the ascorbate-enriched trait in tomato plants by phenotyping the original P17C5 EMS mutant, the population of outcrossed P17C5 × M82 plants, and the CRISPR-mutated line. These studies revealed that high ascorbate content is linked to impaired floral organ architecture, particularly anther and pollen development, leading to male sterility. RNA-seq analysis suggested that uORF-GGP1 acts as a regulator of ascorbate synthesis that maintains redox homeostasis to allow appropriate plant development.


Assuntos
Solanum lycopersicum , Ácido Ascórbico , Fertilidade , Frutas/genética , Solanum lycopersicum/genética , Pólen/genética
7.
Plant J ; 105(4): 907-923, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179365

RESUMO

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Assuntos
Ácido Corísmico/metabolismo , Solanum lycopersicum/metabolismo , Vitamina E/análise , Mapeamento Cromossômico , Frutas/química , Frutas/metabolismo , Genes de Plantas/genética , Engenharia Genética , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Solanum lycopersicum/química , Solanum lycopersicum/genética , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Tirosina/metabolismo , Vitamina E/metabolismo
8.
Planta ; 252(3): 36, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32767124

RESUMO

MAIN CONCLUSION: The oxidant/antioxidant balance affects the ripening time of tomato fruit. Ripening of tomato fruit is associated with several modifications such as loss of cell wall firmness and transformation of chloroplasts to chromoplasts. Besides a peak in H2O2, reactive oxygen species (ROS) are observed at the transition stage. However, the role of different components of oxidative stress metabolism in fruit ripening has been scarcely addressed. Two GDP-L-galactose phosphorylase (GGP) Solanum lycopersicum L. cv Micro-Tom mutants which have fruit with low ascorbic acid content (30% of wild type) were used in this work to unravel the participation of ascorbic acid and H2O2 in fruit maturation. Both GGP mutants show delayed fruit maturation with no peak of H2O2; treatment with ascorbic acid increases its own concentration and accelerates ripening only in mutants to become like wild type plants. Unexpectedly, the treatment with ascorbic acid increases H2O2 synthesis in both mutants resembling what is observed in wild type fruit. Exogenous supplementation with H2O2 decreases its own synthesis delaying fruit maturation in plants with low ascorbic acid content. The site of ROS production is localized in the chloroplasts of fruit of all genotypes as determined by confocal microscopy analysis. The results presented here demonstrate that both ascorbic acid and H2O2 actively participate in tomato fruit ripening.


Assuntos
Ácido Ascórbico/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Ácido Ascórbico/genética , Frutas/genética , Variação Genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética
9.
Planta ; 251(2): 54, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31970534

RESUMO

MAIN CONCLUSION: Reduced GDP-L-galactose phosphorylase expression and deficiency of ascorbic acid content lead to decreased fruit set and yield in tomato plants. Reduced GDP-L-galactose phosphorylase expression and deficiency of ascorbic acid content lead to decreased fruit set and yield in tomato plants. GDP-L-galactose phosphorylase (GGP) catalyzes the first step committed to ascorbic acid synthesis. The participation of GDP-L-galactose phosphorylase and ascorbate in tomato fruit production and quality was studied in this work using two SlGGP1 deficient EMS Micro-Tom mutants. The SlGGP1 mutants display decreased concentrations of ascorbate in roots, leaves, flowers, and fruit. The initiation of anthesis is delayed in ggp1 plants but the number of flowers is similar to wild type. The number of fruits is reduced in ggp1 mutants with an increased individual weight. However, the whole fruit biomass accumulation is reduced in both mutant lines. Fruits of the ggp1 plants produce more ethylene and show higher firmness and soluble solids content than the wild type after the breaker stage. Leaf CO2 uptake decreases about 50% in both ggp1 mutants at saturating light conditions; however, O2 production in an enriched CO2 atmosphere is only 19% higher in wild type leaves. Leaf conductance that is largely reduced in both mutants may be the main limitation for photosynthesis. Sink-source assays and hormone concentration were measured to determine restrictions to fruit yield. Manipulation of leaf area/fruit number relationship demonstrates that the number of fruits and not the provision of photoassimilates from the source restricts biomass accumulation in the ggp1 lines. The lower gibberellins concentration measured in the flowers would contribute to the lower fruit set, thus impacting in tomato yield. Taken as a whole these results demonstrate that ascorbate biosynthetic pathway critically participates in tomato development and fruit production.


Assuntos
Ácido Ascórbico/biossíntese , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Galactose/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Biomassa , Gases/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Mutação/genética , Fotossíntese , Folhas de Planta/metabolismo , Análise de Componente Principal
10.
J Exp Bot ; 71(1): 356-369, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557299

RESUMO

Maize can grow in cool temperate climates but is often exposed to spring chilling temperatures that can affect early seedling growth. Here, we used two sister double-haploid lines displaying a contrasted tolerance to chilling to identify major determinants of long-term chilling tolerance. The chilling-sensitive (CS) and the chilling-tolerant (CT) lines were grown at 14 °C day/10 °C night for 60 d. CS plants displayed a strong reduction in growth and aerial biomass compared with CT plants. Photosynthetic efficiency was affected with an increase in energy dissipation in both lines. Chilling tolerance in CT plants was associated with higher chlorophyll content, glucose-6-phosphate dehydrogenase activity, and higher sucrose to starch ratio. Few changes in cell wall composition were observed in both genotypes. There was no obvious correlation between nucleotide sugar content and cell wall polysaccharide composition. Our findings suggest that the central starch-sucrose metabolism is one major determinant of the response to low temperature, and its modulation accounts for the ability of CT plants to cope with low temperature. This modulation seemed to be linked to a strong alteration in the biosynthesis of nucleotide sugars that, at a high level, could reflect the remobilization of carbon in response to chilling.


Assuntos
Carbono/metabolismo , Temperatura Baixa , Zea mays/metabolismo , Adaptação Fisiológica/genética , Zea mays/genética
11.
Front Plant Sci ; 10: 1201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681351

RESUMO

Central metabolism is the engine of plant biomass, supplying fruit growth with building blocks, energy, and biochemical cofactors. Among metabolic cornerstones, nicotinamide adenine dinucleotide (NAD) is particularly pivotal for electron transfer through reduction-oxidation (redox) reactions, thus participating in a myriad of biochemical processes. Besides redox functions, NAD is now assumed to act as an integral regulator of signaling cascades involved in growth and environmental responses. However, the regulation of NAD metabolism and signaling during fruit development remains poorly studied and understood. Here, we benefit from RNAseq and proteomic data obtained from nine growth stages of tomato fruit (var. Moneymaker) to dissect mRNA and protein profiles that link to NAD metabolism, including de novo biosynthesis, recycling, utilization, and putative transport. As expected for a cofactor synthesis pathway, protein profiles failed to detect enzymes involved in NAD synthesis or utilization, except for nicotinic acid phosphoribosyltransferase (NaPT) and nicotinamidase (NIC), which suggested that most NAD metabolic enzymes were poorly represented quantitatively. Further investigations on transcript data unveiled differential expression patterns during fruit development. Interestingly, among specific NAD metabolism-related genes, early de novo biosynthetic genes were transcriptionally induced in very young fruits, in association with NAD kinase, while later stages of fruit growth rather showed an accumulation of transcripts involved in later stages of de novo synthesis and in NAD recycling, which agreed with augmented NAD(P) levels. In addition, a more global overview of 119 mRNA and 78 protein significant markers for NAD(P)-dependent enzymes revealed differential patterns during tomato growth that evidenced clear regulations of primary metabolism, notably with respect to mitochondrial functions. Overall, we propose that NAD metabolism and signaling are very dynamic in the developing tomato fruit and that its differential regulation is certainly critical to fuel central metabolism linking to growth mechanisms.

12.
Front Plant Sci ; 10: 1091, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620143

RESUMO

Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.

13.
Front Plant Sci ; 9: 137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491875

RESUMO

Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes-ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream.

14.
J Exp Bot ; 67(15): 4767-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27382114

RESUMO

GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues.


Assuntos
Ácido Ascórbico/biossíntese , Carboidratos Epimerases/metabolismo , Parede Celular/metabolismo , Solanum lycopersicum/enzimologia , Carboidratos Epimerases/fisiologia , Parede Celular/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Pólen/metabolismo
15.
Tree Physiol ; 34(3): 253-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24682617

RESUMO

Ozone is an air pollutant that causes oxidative stress by generation of reactive oxygen species (ROS) within the leaf. The capacity to detoxify ROS and repair ROS-induced damage may contribute to ozone tolerance. Ascorbate and glutathione are known to be key players in detoxification. Ozone effects on their biosynthesis and on amino acid metabolism were investigated in three Euramerican poplar genotypes (Populus deltoides Bartr. × Populus nigra L.) differing in ozone sensitivity. Total ascorbate and glutathione contents were increased in response to ozone in all genotypes, with the most resistant genotype (Carpaccio) showing an increase of up to 70%. Reduced ascorbate (ASA) concentration at least doubled in the two most resistant genotypes (Carpaccio and Cima), whereas the most sensitive genotype (Robusta) seemed unable to regenerate ASA from oxidized ascorbate (DHA), leading to an increase of 80% of the oxidized form. Increased ascorbate (ASA + DHA) content correlated with the increase in gene expression in its biosynthetic pathway, especially the putative gene of GDP-l-galactose phosphorylase VTC2. Increased cysteine availability combined with increased expression of γ-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2) genes allows higher glutathione biosynthesis in response to ozone, particularly in Carpaccio. In addition, ozone caused a remobilization of amino acids with a decreased pool of total amino acids and an increase of Cys and putrescine, especially in Carpaccio. In addition, the expression of genes encoding threonine aldolase was strongly induced only in the most tolerant genotype, Carpaccio. Reduced ascorbate levels could partly explain the sensitivity to ozone for Robusta but not for Cima. Reduced ascorbate level alone is not sufficient to account for ozone tolerance in poplar, and it is necessary to consider several other factors including glutathione content.


Assuntos
Aminoácidos/metabolismo , Ácido Ascórbico/biossíntese , Glutationa/biossíntese , Ozônio/farmacologia , Populus/genética , Populus/metabolismo , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Populus/efeitos dos fármacos , Populus/enzimologia
16.
Plant J ; 77(5): 676-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24372694

RESUMO

Limitations in our understanding about the mechanisms that underlie source-sink assimilate partitioning are increasingly becoming a major hurdle for crop yield enhancement via metabolic engineering. By means of a comprehensive approach, this work reports the functional characterization of a DnaJ chaperone related-protein (named as SPA; sugar partition-affecting) that is involved in assimilate partitioning in tomato plants. SPA protein was found to be targeted to the chloroplast thylakoid membranes. SPA-RNAi tomato plants produced more and heavier fruits compared with controls, thus resulting in a considerable increment in harvest index. The transgenic plants also displayed increased pigment levels and reduced sucrose, glucose and fructose contents in leaves. Detailed metabolic and enzymatic activities analyses showed that sugar phosphate intermediates were increased while the activity of phosphoglucomutase, sugar kinases and invertases was reduced in the photosynthetic organs of the silenced plants. These changes would be anticipated to promote carbon export from foliar tissues. The combined results suggested that the tomato SPA protein plays an important role in plastid metabolism and mediates the source-sink relationships by affecting the rate of carbon translocation to fruits.


Assuntos
Metabolismo dos Carboidratos , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Inativação Gênica , Hexoses/metabolismo , Fosfoglucomutase/metabolismo , Fosfotransferases/metabolismo , Fotossíntese , Filogenia , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Trioses/metabolismo , beta-Frutofuranosidase/metabolismo
17.
PLoS One ; 8(12): e84474, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367665

RESUMO

Understanding how the fruit microclimate affects ascorbate (AsA) biosynthesis, oxidation and recycling is a great challenge in improving fruit nutritional quality. For this purpose, tomatoes at breaker stage were harvested and placed in controlled environment conditions at different temperatures (12, 17, 23, 27 and 31 °C) and irradiance regimes (darkness or 150 µmol m(-2) s(-1)). Fruit pericarp tissue was used to assay ascorbate, glutathione, enzymes related to oxidative stress and the AsA/glutathione cycle and follow the expression of genes coding for 5 enzymes of the AsA biosynthesis pathway (GME, VTC2, GPP, L-GalDH, GLDH). The AsA pool size in pericarp tissue was significantly higher under light at temperatures below 27 °C. In addition, light promoted glutathione accumulation at low and high temperatures. At 12 °C, increased AsA content was correlated with the enhanced expression of all genes of the biosynthesis pathway studied, combined with higher DHAR and MDHAR activities and increased enzymatic activities related to oxidative stress (CAT and APX). In contrast, at 31 °C, MDHAR and GR activities were significantly reduced under light indicating that enzymes of the AsA/glutathione cycle may limit AsA recycling and pool size in fruit pericarp, despite enhanced expression of genes coding for AsA biosynthesis enzymes. In conclusion, this study confirms the important role of fruit microclimate in the regulation of fruit pericarp AsA content, as under oxidative conditions (12 °C, light) total fruit pericarp AsA content increased up to 71%. Moreover, it reveals that light and temperature interact to regulate both AsA biosynthesis gene expression in tomato fruits and AsA oxidation and recycling.


Assuntos
Ácido Ascórbico/biossíntese , Ácido Ascórbico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Temperatura Alta , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ácido Ascórbico/efeitos da radiação , Frutas/genética , Frutas/metabolismo , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/genética , Glutationa/metabolismo , Solanum lycopersicum/efeitos da radiação , Oxirredução/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Plant Cell Environ ; 36(1): 159-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22725103

RESUMO

The regulation of carbon allocation between photosynthetic source leaves and sink tissues in response to stress is an important factor controlling plant yield. Ascorbate oxidase is an apoplastic enzyme, which controls the redox state of the apoplastic ascorbate pool. RNA interference was used to decrease ascorbate oxidase activity in tomato (Solanum lycopersicum L.). Fruit yield was increased in these lines under three conditions where assimilate became limiting for wild-type plants: when fruit trusses were left unpruned, when leaves were removed or when water supply was limited. Several alterations in the transgenic lines could contribute to the improved yield and favour transport of assimilate from leaves to fruits in the ascorbate oxidase lines. Ascorbate oxidase plants showed increases in stomatal conductance and leaf and fruit sugar content, as well as an altered apoplastic hexose:sucrose ratio. Modifications in gene expression, enzyme activity and the fruit metabolome were coherent with the notion of the ascorbate oxidase RNAi lines showing altered sink strength. Ascorbate oxidase may therefore be a target for strategies aimed at improving water productivity in crop species.


Assuntos
Ascorbato Oxidase/metabolismo , Metabolismo dos Carboidratos , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/enzimologia , Água/fisiologia , Ascorbato Oxidase/genética , Ácido Ascórbico/metabolismo , Biomassa , Frutas/metabolismo , Hexoses/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Metaboloma , Oxirredução , Folhas de Planta/enzimologia , Estômatos de Plantas/fisiologia , Interferência de RNA , Sacarose/metabolismo
19.
PLoS One ; 7(5): e36795, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615815

RESUMO

The SlPPC2 phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) gene from tomato (Solanum lycopersicum) is differentially and specifically expressed in expanding tissues of developing tomato fruit. We recently showed that a 1966 bp DNA fragment located upstream of the ATG codon of the SlPPC2 gene (GenBank AJ313434) confers appropriate fruit-specificity in transgenic tomato. In this study, we further investigated the regulation of the SlPPC2 promoter gene by analysing the SlPPC2 cis-regulating region fused to either the firefly luciferase (LUC) or the ß-glucuronidase (GUS) reporter gene, using stable genetic transformation and biolistic transient expression assays in the fruit. Biolistic analyses of 5' SlPPC2 promoter deletions fused to LUC in fruits at the 8(th) day after anthesis revealed that positive regulatory regions are mostly located in the distal region of the promoter. In addition, a 5' UTR leader intron present in the 1966 bp fragment contributes to the proper temporal regulation of LUC activity during fruit development. Interestingly, the SlPPC2 promoter responds to hormones (ethylene) and metabolites (sugars) regulating fruit growth and metabolism. When tested by transient expression assays, the chimeric promoter:LUC fusion constructs allowed gene expression in both fruit and leaf, suggesting that integration into the chromatin is required for fruit-specificity. These results clearly demonstrate that SlPPC2 gene is under tight transcriptional regulation in the developing fruit and that its promoter can be employed to drive transgene expression specifically during the cell expansion stage of tomato fruit. Taken together, the SlPPC2 promoter offers great potential as a candidate for driving transgene expression specifically in developing tomato fruit from various tomato cultivars.


Assuntos
Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Solanum lycopersicum/crescimento & desenvolvimento , Sequência de Bases , Primers do DNA , Genes Reporter , Íntrons , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas
20.
Ann Pathol ; 31(4): 236-41, 2011 Aug.
Artigo em Francês | MEDLINE | ID: mdl-21839345
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...