Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Resour Res ; 57(9): e2020WR028876, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34690378

RESUMO

Spatial estimates of crop evapotranspiration with high accuracy from the field to watershed scale have become increasingly important for water management, particularly over irrigated agriculture in semiarid regions. Here, we provide a comprehensive assessment on patterns of annual agricultural water use over California's Central Valley, using 30-m daily evapotranspiration estimates based on Landsat satellite data. A semiempirical Priestley-Taylor approach was locally optimized and cross-validated with available field measurements for major crops including alfalfa, almond, citrus, corn, pasture, and rice. The evapotranspiration estimates explained >70% variance in daily measurements from independent sites with an RMSE of 0.88 mm day-1. When aggregated over the Valley, we estimated an average evapotranspiration of 820 ± 290 mm yr-1 in 2014. Agricultural water use varied significantly across and within crop types, with a coefficient of variation ranging from 8% for Rice (1,110 ± 85 mm yr-1) to 59% for Pistachio (592 ± 352 mm yr-1). Total water uses in 2016 increased by 9.6%, as compared to 2014, mostly because of land-use conversion from fallow/idle land to cropland. Analysis across 134 Groundwater Sustainability Agencies (GSAs) further showed a large variation of agricultural evapotranspiration among and within GSAs, especially for tree crops, e.g., almond evapotranspiration ranging from 339 ± 80 mm yr-1 in Tracy to 1,240 ± 136 mm yr-1 in Tri-County Water Authority. Continuous monitoring and assessment of the dynamics and spatial heterogeneity of agricultural evapotranspiration provide data-driven guidance for more effective land use and water planning across scales.

2.
Sci Total Environ ; 715: 136960, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32014779

RESUMO

Constructed wetlands built for water treatment often need biomass harvesting to remove nutrients from the system. Usually harvesting is done during the peak growing season to maximize the amount of nutrients removed from the system. This, however, can create huge methane fluxes that escape from plant tissues to the atmosphere. We used manual chambers and eddy covariance measurements to analyze the increase in methane emissions due to the harvesting of two common wetland species, Typha spp. and Schoenoplectus spp., in two climatically different constructed wetlands in Estonia and California. In addition, we determined the biomass nutrient and carbon concentrations from harvested biomass. We found that harvesting during the summer season, e.g. June and August, resulted in a significant release of methane at both sites. At the California site, baseline median methane emissions were 217.6 nmol m-2 s-1, and harvesting resulted in increases to 395.4 nmol m-2 s-1 that decreased to baseline emission within three days. Footprint modeling demonstrated that the emission increases measured by eddy covariance were dominated by contributions from the cut area to the total footprint signal. At the Estonian site, harvesting resulted in methane increases of 15.9 nmol m-2 s-1 to 110.4 nmol m-2 s-1 in August. However, in September and October the emission was significantly lower. Plant biomass analyses showed clear temporal dynamics in terms of nutrient concentration, being highest in summer and lowest in winter. Our experiments indicate that the optimal time for aboveground biomass harvesting is at the end of the growing season before nutrient translocation to belowground plant structures begins coinciding with lowest methane emissions. Therefore, strategic planning of the harvest timing may help reduce greenhouse gas emissions from managed wetlands and thus improve their multi-faceted ecological benefit.


Assuntos
Áreas Alagadas , Biomassa , California , Dióxido de Carbono , Estônia , Metano , Nutrientes
4.
Tree Physiol ; 21(12-13): 777-87, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11498325

RESUMO

Leaf area and its spatial distribution are key canopy parameters needed to model the radiation regime within a forest and to compute the mass and energy exchange between a forest and the atmosphere. A much larger proportion of available net radiation is received at the forest floor in open-canopy forests than in closed-canopy forests. The proportion of ecosystem water vapor exchange (lambda E) and sensible heat exchange from the forest floor is therefore expected to be larger in open-canopy forests than in closed-canopy forests. We used a combination of optical and canopy geometry measurements, and robust one- and three-dimensional models to evaluate the influence of canopy architecture and radiative transfer on estimates of carbon, water and energy exchange of a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest. Three-dimensional model simulations showed that the average probability of diffuse and direct radiation transmittance to the forest floor was greater than if a random distribution of foliage had been assumed. Direct and diffuse radiation transmittance to the forest floor was 28 and 39%, respectively, in the three-dimensional model simulations versus 23 and 31%, respectively, in the one-dimensional model simulations. The assumption of randomly distributed foliage versus inclusion of clumping factors in a one-dimensional, multi-layer biosphere-atmosphere gas exchange model (CANVEG) had the greatest effect on simulated annual net ecosystem exchange (NEE) and soil evaporation. Assuming random distribution, NEE was 41% lower, net photosynthesis 3% lower, total lambda E 10% lower, and soil evaporation 40% lower. The same comparisons at LAI 5 showed a similar effect on annual NEE estimates (37%) and lambda E (12%), but a much larger effect on net photosynthesis (20%), suggesting that, at low LAI, canopies are mostly sunlit, so that redistribution of light has little effect on net photosynthesis, whereas the effect on net photosynthesis is much greater at high LAIs.


Assuntos
Folhas de Planta/anatomia & histologia , Árvores/fisiologia , Biomassa , Ecossistema , Luz , Oregon , Fotossíntese/fisiologia , Pinus/anatomia & histologia , Pinus/fisiologia , Folhas de Planta/fisiologia
5.
Glob Chang Biol ; 6(S1): 211-223, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35026938

RESUMO

Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3 °C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These discrepancies relate more strongly to the approach and assumptions for extrapolation than to inconsistencies in the underlying data. Inverse modelling from atmospheric CO2 concentrations suggests that high latitudes are neutral or net sinks for atmospheric CO2 , whereas field measurements suggest that high latitudes are neutral or a net CO2 source. Both approaches rely on assumptions that are difficult to verify. The most parsimonious explanation of the available data is that drying in tundra and disturbance in boreal forest enhance CO2 efflux. Nevertheless, many areas of both tundra and boreal forests remain net sinks due to regional variation in climate and local variation in topographically determined soil moisture. Improved understanding of the role of high-latitude ecosystems in the climate system requires a concerted research effort that focuses on geographical variation in the processes controlling land-atmosphere exchange, species composition, and ecosystem structure. Future studies must be conducted over a long enough time-period to detect and quantify ecosystem feedbacks.

6.
Oecologia ; 116(3): 306-315, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28308061

RESUMO

The micrometeorological flux measurement technique known as relaxed eddy accumulation (REA) holds promise as a powerful new tool for ecologists. The more popular eddy covariance (eddy correlation) technique requires the use of sensors that can respond at fast rates (10 Hz), and these are unavailable for many ecologically relevant compounds. In contrast, the use of REA allows flux measurement with sensors that have much slower response time, such as gas chromatography and mass spectrometry. In this review, relevant micrometeorological details underlying REA are presented, and critical analytical and system design details are discussed, with the goal of introducing the technique and its potential applications to ecologists. The validity of REA for measuring fluxes of isoprene, a photochemically reactive hydrocarbon emitted by several plant species, was tested with measurements over an oak-hickory forest in the Walker Branch Watershed in eastern Tennessee. Concurrent eddy covariance measurements of isoprene flux were made using a newly available chemiluminesence instrument. Excellent agreement was obtained between the two techniques (r 2 = 0.974, n = 62), providing the first direct comparison between REA and eddy covariance for measuring the flux rate of a reactive compound. The influence of a bias in vertical wind velocity on the accuracy of REA was examined. This bias has been thought to be a source of significant error in the past. Measurements of normalized bias ([Formula: see text]) alone would lead us to think that a large potential error exists at this site. However, with our isoprene data and through simulations of REA with fast-response H2O and CO2 data, we conclude that accurate REA flux measurements can be made even in the presence of a bias in w.

7.
Tree Physiol ; 17(8_9): 511-519, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-14759824

RESUMO

Three independent methods were used to evaluate transpiration of a boreal forest: the branch bag, sap flow and eddy covariance methods. The branch bag method encloses several thousand needles and gives a continuous record of branch transpiration. The sap flow method provides a continuous record of sap velocity and an estimate of tree transpiration. The eddy covariance method typically measures evaporation rates between a forest and the atmosphere. We deployed an extra eddy covariance system below the forest to estimate canopy transpiration by difference. The three systems detected small water vapor fluxes despite a plentiful supply of energy to drive evaporation. We also observed that transpiration rates were low even when the soil was well supplied with water. Low rates of transpiration were attributed to the canopy's low leaf area index and the marked reduction in stomatal conductance as vapor pressure deficits increased. Water vapor fluxes, derived from the sap flow method, lagged behind those derived by the branch bag method by 1 to 2 h. The sap flow method also suffered from sampling errors caused by the non-uniformity of flow across the sapwood and the spatial variability of sapwood cross section throughout the forest. Despite technical difficulties associated with hourly measurements, daily totals of transpiration agreed well with values derived from micrometeorological systems.

8.
Tree Physiol ; 5(3): 357-77, 1989 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14972980

RESUMO

Carbon dioxide, water vapor and other passive scalars are physically transferred between a plant canopy and the atmosphere by turbulence. Intense and intermittent sweep and ejection events transfer most of the mass. Although the capacity for turbulence to transfer material is high, mass transfer is coupled to the diffusive source or sink strength of the foliage and soil and is ultimately limited to a minimum level set by the supply of material, or the demand for it. The diffusive source/sink strength of material leaving or entering leaves and the soil is a function of many physical, biological and chemical attributes and processes. These attributes and processes include the amount and distribution of foliage, the leaf boundary layer and surface resistances, the turbulence and radiative regimes in the canopy, biochemical and photochemical reactions and the scalar concentration field within and above the canopy and inside leaves and the soil. Here we discuss how these factors contribute to turbulent transfer in a deciduous forest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...