Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
mSystems ; 9(1): e0093623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38170982

RESUMO

Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.


Assuntos
Compostos de Amônio , Áreas Alagadas , Solo/química , Metano/metabolismo , Salinidade , Carbono/metabolismo , Nitrogênio , Sulfatos
3.
Nat Commun ; 14(1): 1926, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024458

RESUMO

Alfalfa is the most widely grown forage crop worldwide and is thought to be a significant carbon sink due to high productivity, extensive root systems, and nitrogen-fixation. However, these conditions may increase nitrous oxide (N2O) emissions thus lowering the climate change mitigation potential. We used a suite of long-term automated instrumentation and satellite imagery to quantify patterns and drivers of greenhouse gas fluxes in a continuous alfalfa agroecosystem in California. We show that this continuous alfalfa system was a large N2O source (624 ± 28 mg N2O m2 y-1), offsetting the ecosystem carbon (carbon dioxide (CO2) and methane (CH4)) sink by up to 14% annually. Short-term N2O emissions events (i.e., hot moments) accounted for ≤1% of measurements but up to 57% of annual emissions. Seasonal and daily trends in rainfall and irrigation were the primary drivers of hot moments of N2O emissions. Significant coherence between satellite-derived photosynthetic activity and N2O fluxes suggested plant activity was an important driver of background emissions. Combined data show annual N2O emissions can significantly lower the carbon-sink potential of continuous alfalfa agriculture.

4.
Glob Chang Biol ; 28(3): 990-1007, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735731

RESUMO

Reliable partitioning of micrometeorologically measured evapotranspiration (ET) into evaporation (E) and transpiration (T) would greatly enhance our understanding of the water cycle and its response to climate change related shifts in local-to-regional climate conditions and rising global levels of vapor pressure deficit (VPD). While some methods on ET partitioning have been developed, their underlying assumptions make them difficult to apply more generally, especially in sites with large contributions of E. Here, we report a novel ET partitioning method using artificial neural networks (ANNs) in combination with a range of environmental input variables to predict daytime E from nighttime ET measurements. The study uses eddy covariance data from four restored wetlands in the Sacramento-San Joaquin Delta, California, USA, as well as leaf-level T data for validation. The four wetlands vary in their vegetation make-up and structure, representing a range of ET conditions. The ANNs were built with increasing complexity by adding the input variable that resulted in the next highest average value of model testing R2 across all sites. The order of variable inclusion (and importance) was: VPD > gap-filled sensible heat flux (H_gf) > air temperature (Tair ) > friction velocity (u∗ ) > other variables. The model using VPD, H_gf, Tair , and u∗ showed the best performance during validation with independent data and had a mean testing R2  value of 0.853 (averaged across all sites, range from 0.728 to 0.910). In comparison to other methods, our ANN method generated T/ET partitioning results which were more consistent with CO2 exchange data especially for more heterogeneous sites with large E contributions. Our method improves the understanding of T/ET partitioning. While it may be particularly suited to flooded ecosystems, it can also improve T/ET partitioning in other systems, increasing our knowledge of the global water cycle and ecosystem functioning.


Assuntos
Ecossistema , Áreas Alagadas , Mudança Climática , Inundações , Transpiração Vegetal/fisiologia , Estações do Ano , Água
5.
Nature ; 598(7881): 468-472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34552242

RESUMO

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.


Assuntos
Ciclo do Carbono , Ecossistema , Plantas/metabolismo , Ciclo Hidrológico , Dióxido de Carbono/metabolismo , Clima , Conjuntos de Dados como Assunto , Umidade , Plantas/classificação , Análise de Componente Principal
6.
J Environ Manage ; 299: 113562, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425499

RESUMO

The concentration of nitrous oxide (N2O), an ozone-depleting greenhouse gas, is rapidly increasing in the atmosphere. Most atmospheric N2O originates in terrestrial ecosystems, of which the majority can be attributed to microbial cycling of nitrogen in agricultural soils. Here, we demonstrate how the abundance of nitrogen cycling genes vary across intensively managed agricultural fields and adjacent restored wetlands in the Sacramento-San Joaquin Delta in California, USA. We found that the abundances of nirS and nirK genes were highest at the intensively managed organic-rich cornfield and significantly outnumber any other gene abundances, suggesting very high N2O production potential. The quantity of nitrogen transforming genes, particularly those responsible for denitrification, nitrification and DNRA, were highest in the agricultural sites, whereas nitrogen fixation and ANAMMOX was strongly associated with the wetland sites. Although the abundance of nosZ genes was also high at the agricultural sites, the ratio of nosZ genes to nir genes was significantly higher in wetland sites indicating that these sites could act as a sink of N2O. These findings suggest that wetland restoration could be a promising natural climate solution not only for carbon sequestration but also for reduced N2O emissions.


Assuntos
Microbiota , Áreas Alagadas , Desnitrificação , Nitrogênio , Ciclo do Nitrogênio , Óxido Nitroso/análise , Solo , Microbiologia do Solo
7.
PLoS One ; 16(3): e0248398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765085

RESUMO

Inundated wetlands can potentially sequester substantial amounts of soil carbon (C) over the long-term because of slow decomposition and high primary productivity, particularly in climates with long growing seasons. Restoring such wetlands may provide one of several effective negative emission technologies to remove atmospheric CO2 and mitigate climate change. However, there remains considerable uncertainty whether these heterogeneous ecotones are consistent net C sinks and to what degree restoration and management methods affect C sequestration. Since wetland C dynamics are largely driven by climate, it is difficult to draw comparisons across regions. With many restored wetlands having different functional outcomes, we need to better understand the importance of site-specific conditions and how they change over time. We report on 21 site-years of C fluxes using eddy covariance measurements from five restored fresh to brackish wetlands in a Mediterranean climate. The wetlands ranged from 3 to 23 years after restoration and showed that several factors related to restoration methods and site conditions altered the magnitude of C sequestration by affecting vegetation cover and structure. Vegetation established within two years of re-flooding but followed different trajectories depending on design aspects, such as bathymetry-determined water levels, planting methods, and soil nutrients. A minimum of 55% vegetation cover was needed to become a net C sink, which most wetlands achieved once vegetation was established. Established wetlands had a high C sequestration efficiency (i.e. the ratio of net to gross ecosystem productivity) comparable to upland ecosystems but varied between years undergoing boom-bust growth cycles and C uptake strength was susceptible to disturbance events. We highlight the large C sequestration potential of productive inundated marshes, aided by restoration design and management targeted to maximise vegetation extent and minimise disturbance. These findings have important implications for wetland restoration, policy, and management practitioners.


Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Mudança Climática , Ecossistema , Áreas Alagadas , California , Inundações , Estações do Ano
8.
Environ Sci Technol ; 55(6): 3494-3504, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33660506

RESUMO

Eddy covariance measurement systems provide direct observation of the exchange of greenhouse gases between ecosystems and the atmosphere, but have only occasionally been intentionally applied to quantify the carbon dynamics associated with specific climate mitigation strategies. Natural climate solutions (NCS) harness the photosynthetic power of ecosystems to avoid emissions and remove atmospheric carbon dioxide (CO2), sequestering it in biological carbon pools. In this perspective, we aim to determine which kinds of NCS strategies are most suitable for ecosystem-scale flux measurements and how these measurements should be deployed for diverse NCS scales and goals. We find that ecosystem-scale flux measurements bring unique value when assessing NCS strategies characterized by inaccessible and hard-to-observe carbon pool changes, important non-CO2 greenhouse gas fluxes, the potential for biophysical impacts, or dynamic successional changes. We propose three deployment types for ecosystem-scale flux measurements at various NCS scales to constrain wide uncertainties and chart a workable path forward: "pilot", "upscale", and "monitor". Together, the integration of ecosystem-scale flux measurements by the NCS community and the prioritization of NCS measurements by the flux community, have the potential to improve accounting in ways that capture the net impacts, unintended feedbacks, and on-the-ground specifics of a wide range of emerging NCS strategies.


Assuntos
Ecossistema , Gases de Efeito Estufa , Dióxido de Carbono/análise , Clima , Mudança Climática
9.
Glob Chang Biol ; 26(1): 242-260, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461544

RESUMO

A global network of long-term carbon and water flux measurements has existed since the late 1990s. With its representative sampling of the terrestrial biosphere's climate and ecological spaces, this network is providing background information and direct measurements on how ecosystem metabolism responds to environmental and biological forcings and how they may be changing in a warmer world with more carbon dioxide. In this review, I explore how carbon and water fluxes of the world's ecosystem are responding to a suite of covarying environmental factors, like sunlight, temperature, soil moisture, and carbon dioxide. I also report on how coupled carbon and water fluxes are modulated by biological and ecological factors such as phenology and a suite of structural and functional properties. And, I investigate whether long-term trends in carbon and water fluxes are emerging in various ecological and climate spaces and the degree to which they may be driven by physical and biological forcings. As a growing number of time series extend up to 20 years in duration, we are at the verge of capturing ecosystem scale trends in the breathing of a changing biosphere. Consequently, flux measurements need to continue to report on future conditions and responses and assess the efficacy of natural climate solutions.


Assuntos
Dióxido de Carbono , Ecossistema , Clima , Mudança Climática , Solo
10.
Glob Chang Biol ; 26(2): 772-785, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710754

RESUMO

Reflooding formerly drained peatlands has been proposed as a means to reduce losses of organic matter and sequester soil carbon for climate change mitigation, but a renewal of high methane emissions has been reported for these ecosystems, offsetting mitigation potential. Our ability to interpret observed methane fluxes in reflooded peatlands and make predictions about future flux trends is limited due to a lack of detailed studies of methanogenic processes. In this study we investigate methanogenesis in a reflooded agricultural peatland in the Sacramento Delta, California. We use the stable-and radio-carbon isotopic signatures of wetland sediment methane, ecosystem-scale eddy covariance flux observations, and laboratory incubation experiments, to identify which carbon sources and methanogenic production pathways fuel methanogenesis and how these processes are affected by vegetation and seasonality. We found that the old peat contribution to annual methane emissions was large (~30%) compared to intact wetlands, indicating a biogeochemical legacy of drainage. However, fresh carbon and the acetoclastic pathway still accounted for the majority of methanogenesis throughout the year. Although temperature sensitivities for bulk peat methanogenesis were similar between open-water (Q10  = 2.1) and vegetated (Q10  = 2.3) soils, methane production from both fresh and old carbon sources showed pronounced seasonality in vegetated zones. We conclude that high methane emissions in restored wetlands constitute a biogeochemical trade-off with contemporary carbon uptake, given that methane efflux is fueled primarily by fresh carbon inputs.


Assuntos
Dióxido de Carbono , Ecossistema , California , Metano , Solo , Áreas Alagadas
12.
Ecol Appl ; 28(5): 1313-1324, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29694698

RESUMO

A central challenge to understanding how climate anomalies, such as drought and heatwaves, impact the terrestrial carbon cycle, is quantification and scaling of spatial and temporal variation in ecosystem gross primary productivity (GPP). Existing empirical and model-based satellite broadband spectra-based products have been shown to miss critical variation in GPP. Here, we evaluate the potential of high spectral resolution (10 nm) shortwave (400-2,500 nm) imagery to better detect spatial and temporal variations in GPP across a range of ecosystems, including forests, grassland-savannas, wetlands, and shrublands in a water-stressed region. Estimates of GPP from eddy covariance observations were compared against airborne hyperspectral imagery, collected across California during the 2013-2014 HyspIRI airborne preparatory campaign. Observations from 19 flux towers across 23 flight campaigns (102 total image-flux tower pairs) showed GPP to be strongly correlated to a suite of spectral wavelengths and band ratios associated with foliar physiology and chemistry. A partial least squares regression (PLSR) modeling approach was then used to predict GPP with higher validation accuracy (adjusted R2  = 0.71) and low bias (0.04) compared to existing broadband approaches (e.g., adjusted R2  = 0.68 and bias = -5.71 with the Sims et al. model). Significant wavelengths contributing to the PLSR include those previously shown to coincide with Rubisco (wavelengths 1,680, 1,740, and 2,290 nm) and Vcmax (wavelengths 1,680, 1,722, 1,732, 1,760, and 2,300 nm). These results provide strong evidence that advances in satellite spectral resolution offer significant promise for improved satellite-based monitoring of GPP variability across a diverse range of terrestrial ecosystems.


Assuntos
Secas , Ecossistema , Tecnologia de Sensoriamento Remoto/métodos , Análise Espectral/métodos , California , Florestas , Pradaria , Áreas Alagadas
13.
Glob Chang Biol ; 24(9): 4107-4121, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29575340

RESUMO

Wetlands are the largest source of methane (CH4 ) globally, yet our understanding of how process-level controls scale to ecosystem fluxes remains limited. It is particularly uncertain how variable soil properties influence ecosystem CH4 emissions on annual time scales. We measured ecosystem carbon dioxide (CO2 ) and CH4 fluxes by eddy covariance from two wetlands recently restored on peat and alluvium soils within the Sacramento-San Joaquin Delta of California. Annual CH4 fluxes from the alluvium wetland were significantly lower than the peat site for multiple years following restoration, but these differences were not explained by variation in dominant climate drivers or productivity across wetlands. Soil iron (Fe) concentrations were significantly higher in alluvium soils, and alluvium CH4 fluxes were decoupled from plant processes compared with the peat site, as expected when Fe reduction inhibits CH4 production in the rhizosphere. Soil carbon content and CO2 uptake rates did not vary across wetlands and, thus, could also be ruled out as drivers of initial CH4 flux differences. Differences in wetland CH4 fluxes across soil types were transient; alluvium wetland fluxes were similar to peat wetland fluxes 3 years after restoration. Changing alluvium CH4 emissions with time could not be explained by an empirical model based on dominant CH4 flux biophysical drivers, suggesting that other factors, not measured by our eddy covariance towers, were responsible for these changes. Recently accreted alluvium soils were less acidic and contained more reduced Fe compared with the pre-restoration parent soils, suggesting that CH4 emissions increased as conditions became more favorable to methanogenesis within wetland sediments. This study suggests that alluvium soil properties, likely Fe content, are capable of inhibiting ecosystem-scale wetland CH4 flux, but these effects appear to be transient without continued input of alluvium to wetland sediments.


Assuntos
Dióxido de Carbono/análise , Sedimentos Geológicos/análise , Metano/análise , Solo/química , Áreas Alagadas , California , Carbono/análise , Conservação dos Recursos Naturais
14.
Photosynth Res ; 132(3): 277-291, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28425026

RESUMO

Ecosystem CO2 fluxes measured with eddy-covariance techniques provide a new opportunity to retest functional responses of photosynthesis to abiotic factors at the ecosystem level, but examining the effects of one factor (e.g., temperature) on photosynthesis remains a challenge as other factors may confound under circumstances of natural experiments. In this study, we developed a data mining framework to analyze a set of ecosystem CO2 fluxes measured from three eddy-covariance towers, plus a suite of abiotic variables (e.g., temperature, solar radiation, air, and soil moisture) measured simultaneously, in a Californian oak-grass savanna from 2000 to 2015. Natural covariations of temperature and other factors caused remarkable confounding effects in two particular conditions: lower light intensity at lower temperatures and drier air and soil at higher temperatures. But such confounding effects may cancel out. At the ecosystem level, photosynthetic responses to temperature did follow a quadratic function on average. The optimum value of photosynthesis occurred within a narrow temperature range (i.e., optimum temperature, T opt): 20.6 ± 0.6, 18.5 ± 0.7, 19.2 ± 0.5, and 19.0 ± 0.6 °C for the oak canopy, understory grassland, entire savanna, and open grassland, respectively. This paradigm confirms that photosynthesis response to ambient temperature changes is a functional relationship consistent across leaf-canopy-ecosystem scales. Nevertheless, T opt can shift with variations in light intensity, air dryness, or soil moisture. These findings will pave the way to a direct determination of thermal optima and limits of ecosystem photosynthesis, which can in turn provide a rich resource for baseline thresholds and dynamic response functions required for predicting global carbon balance and geographic shifts of vegetative communities in response to climate change.


Assuntos
Poaceae/metabolismo , Mudança Climática , Ecossistema , Pradaria , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Temperatura
15.
Plant Cell Environ ; 40(7): 1214-1238, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27925232

RESUMO

A common approach for estimating fluxes of CO2 and water in canopy models is to couple a model of photosynthesis (An ) to a semi-empirical model of stomatal conductance (gs ) such as the widely validated and utilized Ball-Berry (BB) model. This coupling provides an effective way of predicting transpiration at multiple scales. However, the designated value of the slope parameter (m) in the BB model impacts transpiration estimates. There is a lack of consensus regarding how m varies among species or plant functional types (PFTs) or in response to growth conditions. Literature values are highly variable, with inter-species and intra-species variations of >100%, and comparisons are made more difficult because of differences in collection techniques. This paper reviews the various methods used to estimate m and highlights how variations in measurement techniques or the data utilized can influence the resultant m. Additionally, this review summarizes the reported responses of m to [CO2 ] and water stress, collates literature values by PFT and compiles nearly three decades of values into a useful compendium.


Assuntos
Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Dióxido de Carbono/metabolismo , Modelos Biológicos
16.
Glob Chang Biol ; 23(7): 2768-2782, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27888548

RESUMO

Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open-water diffusion and ebullition fluxes of CO2 , CH4 , and N2 O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy-covariance measurements of whole-ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open-water and vegetated cover types. Annual open-water CO2 , CH4 , and N2 O emissions were 915 ± 95 g C-CO2  m-2  yr-1 , 2.9 ± 0.5 g C-CH4  m-2  yr-1 , and 62 ± 17 mg N-N2 O m-2  yr-1 , respectively. Diffusion dominated open-water GHG transport, accounting for >99% of CO2 and N2 O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2 O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open-water fluxes (3.5 ± 0.3 kg CO2 -eq m-2  yr-1 ) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2 -eq m-2  yr-1 ) due to high ecosystem respiration. After scaling results to the entire wetland using object-based cover classification of remote sensing imagery, net uptake of CO2 (-1.4 ± 0.6 kt CO2 -eq yr-1 ) did not offset CH4 emission (3.7 ± 0.03 kt CO2 -eq yr-1 ), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2 -eq yr-1 . These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.


Assuntos
Efeito Estufa , Metano , Óxido Nitroso , Áreas Alagadas , Dióxido de Carbono , Ecossistema
17.
Proc Natl Acad Sci U S A ; 113(21): 5880-5, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27114518

RESUMO

The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.


Assuntos
Ciclo do Carbono , Secas , Carbono , Dióxido de Carbono , Ecossistema , Fontes Termais
18.
Ecol Appl ; 25(1): 99-115, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26255360

RESUMO

The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest, and grassland/crops) to derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated with greenness derived from camera imagery in all three plant functional types. Specifically, the beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the end of the photosynthetic period in grassland/crops were both correlated with changes in greenness; changes in redness were correlated with the end of the photosynthetic period in deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or ending of the photosynthetic period using camera greenness in evergreen needleleaf forest. At deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly correlated up to 60 days after the mean onset date for the start of spring. More generally, results from this work demonstrate that digital repeat photography can be used to quantify both the duration of the photosynthetically active period as well as total GPP in deciduous broadleaf forest and grassland/crops, but that new and different approaches are required before comparable results can be achieved in evergreen needleleaf forest.


Assuntos
Florestas , Fotografação/instrumentação , Fotografação/métodos , Fotossíntese/fisiologia , Plantas/metabolismo , Estações do Ano , Pigmentos Biológicos , Plantas/classificação , Fatores de Tempo
19.
Tree Physiol ; 35(5): 485-500, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25855663

RESUMO

The California Mediterranean savanna has harsh summer conditions with minimal soil moisture, high temperature, high incoming solar radiation and little or no precipitation. Deciduous blue oaks, Quercus douglasii Hook. and Arn., are winter-deciduous obligate phreatophytes, transpiring mostly groundwater throughout the summer drought. The objective of this work is to fully characterize the seasonal trends of photosynthesis in blue oaks as well as the mechanistic relationships between leaf structure and function. We estimate radiative load of the leaves via the FLiES model and perform in situ measurements of leaf water potential, leaf nitrogen content, an index of chlorophyll content (SPAD readings), photosynthetic and electron transport capacity, and instantaneous rates of CO2 assimilation and electron transport. We measured multiple trees over 3 years providing data from a range of conditions. Our study included one individual that demonstrated strong drought stress as indicated by changes in SPAD readings, leaf nitrogen and all measures of leaf functioning. In the year following severe environmental stress, one individual altered foliation patterns on the crown but did not die. In all other individuals, we found that net carbon assimilation and photosynthetic capacity decreased during the summer drought. SPAD values, electron transport rate (ETR) and quantum yield of photosystem II (PSII) did not show a strong decrease during the summer drought. In most individuals, PSII activity and SPAD readings did not indicate leaf structural or functional damage throughout the season. While net carbon assimilation was tightly coupled to stomatal conductance, the coupling was not as tight with ETR possibly due to contributions from photorespiration or other protective processes. Our work demonstrates that the blue oaks avoid structural damage by maintaining the capacity to convert and dissipate incoming solar radiation during the hot summer drought and are effective at fixing carbon by maximizing rates during the mild spring conditions.


Assuntos
Secas , Fotossíntese , Quercus/metabolismo , California , Transporte de Elétrons , Folhas de Planta/metabolismo , Estações do Ano
20.
Proc Natl Acad Sci U S A ; 112(15): 4594-9, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25831506

RESUMO

Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.


Assuntos
Mudança Climática , Clima , Ecossistema , Áreas Alagadas , Dióxido de Carbono/metabolismo , Ecologia/métodos , Geografia , Atividades Humanas , Humanos , Metano/metabolismo , Modelos Teóricos , Óxido Nitroso/metabolismo , Plantas/classificação , Plantas/metabolismo , Temperatura , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...