Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Data ; 8(1): 22, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473128

RESUMO

High quality laboratory measurements of nearshore waves and morphology change at, or near prototype-scale are essential to support new understanding of coastal processes and enable the development and validation of predictive models. The DynaRev experiment was completed at the GWK large wave flume over 8 weeks during 2017 to investigate the response of a sandy beach to water level rise and varying wave conditions with and without a dynamic cobble berm revetment, as well as the resilience of the revetment itself. A large array of instrumentation was used throughout the experiment to capture: (1) wave transformation from intermediate water depths to the runup limit at high spatio-temporal resolution, (2) beach profile change including wave-by-wave changes in the swash zone, (3) detailed hydro and morphodynamic measurements around a developing and a translating sandbar.

3.
Mar Pollut Bull ; 86(1-2): 91-101, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25113099

RESUMO

Measurements of coral structural strength are coupled with a fluid dynamics-structural analysis to investigate the resilience of coral to wave loading under sea level rise and a typical Great Barrier Reef lagoon wave climate. The measured structural properties were used to determine the wave conditions and flow velocities that lead to structural failure. Hydrodynamic modelling was subsequently used to investigate the type of the bathymetry where coral is most vulnerable to breakage under cyclonic wave conditions, and how sea level rise (SLR) changes this vulnerability. Massive corals are determined not to be vulnerable to wave induced structural damage, whereas branching corals are susceptible at wave induced orbital velocities exceeding 0.5m/s. Model results from a large suite of idealised bathymetry suggest that SLR of 1m or a loss of skeleton strength of order 25% significantly increases the area of reef flat where branching corals are exposed to damaging wave induced flows.


Assuntos
Antozoários/fisiologia , Mudança Climática , Movimentos da Água , Animais , Antozoários/anatomia & histologia , Fenômenos Biomecânicos , Recifes de Corais , Hidrodinâmica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...