Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroanat ; 17: 1168523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206998

RESUMO

The common shrew, Sorex araneus, is a small mammal of growing interest in neuroscience research, as it exhibits dramatic and reversible seasonal changes in individual brain size and organization (a process known as Dehnel's phenomenon). Despite decades of studies on this system, the mechanisms behind the structural changes during Dehnel's phenomenon are not yet understood. To resolve these questions and foster research on this unique species, we present the first combined histological, magnetic resonance imaging (MRI), and transcriptomic atlas of the common shrew brain. Our integrated morphometric brain atlas provides easily obtainable and comparable anatomic structures, while transcriptomic mapping identified distinct expression profiles across most brain regions. These results suggest that high-resolution morphological and genetic research is pivotal for elucidating the mechanisms underlying Dehnel's phenomenon while providing a communal resource for continued research on a model of natural mammalian regeneration. Morphometric and NCBI Sequencing Read Archive are available at https://doi.org/10.17617/3.HVW8ZN.

2.
Anim Cogn ; 25(2): 473-491, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34671864

RESUMO

Forgoing immediate satisfaction for higher pay-offs in the future (delayed gratification) could be adaptive in situations that wild animals may encounter. To explain species-differences in self-control, hypotheses based on social complexity, feeding ecology, brain size and metabolic rate have been proposed. To explore these hypotheses in a comparative setting, we tested three macaw species (neotropical parrots)-great green macaws (N = 8), blue-throated macaws (N = 6), blue-headed macaws (N = 6)-and the distantly related African grey parrots (afrotropical parrots; N = 8) in a modified rotating tray task, in which subjects are required to inhibit consuming a constantly available low-quality reward in favour of a high-quality reward that becomes available only after an increasing delay (min. 5 s, max. 60 s). All four species successfully waited for a minimum of 8.3 s ± 11.7 s (group level mean ± SD) with African greys reaching a delay of 29.4 ± 15.2 s, and great green macaws-as best performing macaw species-tolerating delays of 20 s ± 8 s. The best performing African grey individual reached a maximum delay of 50 s, whereas, a great green and a blue-throated macaw tolerated a delay of 30 s max. Females tolerated higher maximum delays than males. Engaging in distraction behaviours enhanced waiting performance across species and all birds were able to anticipate the waiting duration. Our results suggest that both feeding and socio-ecological complexity may be a factor in self-control, but further systematically collected comparative data on self-control of different (parrot) species are required to test the evolutionary hypotheses rigorously.


Assuntos
Papagaios , Recompensa , Autocontrole , Animais , Evolução Biológica , Feminino , Masculino , Papagaios/classificação , Prazer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...