Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313572, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809501

RESUMO

Sodium-ion batteries (NIBs) have recently garnered significant interest in being employed alongside conventional lithium-ion batteries, particularly in applications where cost and sustainability are particularly relevant. The rapid progress in NIBs will undoubtedly expedite the commercialization process. In this regard, tailoring and designing electrolyte formulation is a top priority, as they profoundly influence the overall electrochemical performance and thermal, mechanical, and dimensional stability. Moreover, electrolytes play a critical role in determining the system's safety level and overall lifespan. This review delves into recent electrolyte advancements from liquid (organic and ionic liquid) to solid and quasi-solid electrolyte (dry, hybrid, and single ion conducting electrolyte) for NIBs, encompassing comprehensive strategies for electrolyte design across various materials, systems and their functional applications. Our objective is to offer strategic direction for the systematic production of safe electrolytes and to investigate the potential applications of these designs in real-world scenarios while thoroughly assessing the current obstacles and forthcoming prospects within this rapidly evolving field. This article is protected by copyright. All rights reserved.

2.
ACS Appl Mater Interfaces ; 15(48): 55620-55632, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983386

RESUMO

There is an enormous drive for moving toward cathode material research in LIBs due to the proposal of zero-emission electric vehicles together with the restriction of cathode materials in design. LiNi0.5Mn1.5O4 (LNMO) attracts great research interests as high-voltage Co-free cathodes in LIBs. However, a more extensive study is required for LNMO due to its poor electrochemical performance, especially at high temperature, because of the instability of the LNMO interface. Herein, we design structural modifications using Mg and Zr to alleviate the above-mentioned drawbacks by limiting Mn dissolution and tailoring interstitial sites (which are shown by structural and electrochemical characterizations). This strategy enhances the cycle life up to 1000 cycles at both 25 and 50 °C. In addition, a thorough characterization by impedance spectroscopy is applied to give an insight into the electronic and ionic transport properties and the intricate phase transitions occurring upon oxidation and reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...