Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Nature ; 618(7964): 252-256, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286648

RESUMO

The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called 'coronal holes'. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating1,2 and interchange reconnection3-5. The coronal magnetic field near the solar surface is structured on scales associated with 'supergranulation' convection cells, whereby descending flows create intense fields. The energy density in these 'network' magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic 'switchbacks'7,8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts.

2.
Space Sci Rev ; 219(2): 18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874191

RESUMO

A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.

3.
Geophys Res Lett ; 49(9): e2021GL096986, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35864893

RESUMO

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R s and 20 R s , respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of ∼3, due to the Alfvén speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energized protons were found to have leaked out of the exhaust along separatrix field lines, appearing as field-aligned energetic proton beams in a broad region outside the HCS. Concurrent dropouts of strahl electrons, indicating disconnection from the Sun, provide further evidence for the HCS being the source of the beams. Around the HCS in E07, there were also proton beams but without electron strahl dropouts, indicating that their origin was not the local HCS reconnection exhaust.

4.
Lab Chip ; 21(8): 1454-1474, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33881130

RESUMO

Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro, therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening.


Assuntos
Desenvolvimento de Medicamentos , Dispositivos Lab-On-A-Chip , Humanos , Fígado , Perfusão , Fluxo de Trabalho
5.
Phys Rev Lett ; 127(25): 255101, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029449

RESUMO

The high temperatures and strong magnetic fields of the solar corona form streams of solar wind that expand through the Solar System into interstellar space. At 09:33 UT on 28 April 2021 Parker Solar Probe entered the magnetized atmosphere of the Sun 13 million km above the photosphere, crossing below the Alfvén critical surface for five hours into plasma in casual contact with the Sun with an Alfvén Mach number of 0.79 and magnetic pressure dominating both ion and electron pressure. The spectrum of turbulence below the Alfvén critical surface is reported. Magnetic mapping suggests the region was a steady flow emerging on rapidly expanding coronal magnetic field lines lying above a pseudostreamer. The sub-Alfvénic nature of the flow may be due to suppressed magnetic reconnection at the base of the pseudostreamer, as evidenced by unusually low densities in this region and the magnetic mapping.

6.
Geophys Res Lett ; 47(20): e2020GL090115, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380758

RESUMO

The solar wind is slowed, deflected, and heated as it encounters Venus's induced magnetosphere. The importance of kinetic plasma processes to these interactions has not been examined in detail, due to a lack of constraining observations. In this study, kinetic-scale electric field structures are identified in the Venusian magnetosheath, including plasma double layers. The double layers may be driven by currents or mixing of inhomogeneous plasmas near the edge of the magnetosheath. Estimated double-layer spatial scales are consistent with those reported at Earth. Estimated potential drops are similar to electron temperature gradients across the bow shock. Many double layers are found in few high cadence data captures, suggesting that their amplitudes are high relative to other magnetosheath plasma waves. These are the first direct observations of plasma double layers beyond near-Earth space, supporting the idea that kinetic plasma processes are active in many space plasma environments.

7.
Nature ; 576(7786): 223-227, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802005

RESUMO

NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.

8.
Nature ; 576(7786): 228-231, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802006

RESUMO

The prediction of a supersonic solar wind1 was first confirmed by spacecraft near Earth2,3 and later by spacecraft at heliocentric distances as small as 62 solar radii4. These missions showed that plasma accelerates as it emerges from the corona, aided by unidentified processes that transport energy outwards from the Sun before depositing it in the wind. Alfvénic fluctuations are a promising candidate for such a process because they are seen in the corona and solar wind and contain considerable energy5-7. Magnetic tension forces the corona to co-rotate with the Sun, but any residual rotation far from the Sun reported until now has been much smaller than the amplitude of waves and deflections from interacting wind streams8. Here we report observations of solar-wind plasma at heliocentric distances of about 35 solar radii9-11, well within the distance at which stream interactions become important. We find that Alfvén waves organize into structured velocity spikes with duration of up to minutes, which are associated with propagating S-like bends in the magnetic-field lines. We detect an increasing rotational component to the flow velocity of the solar wind around the Sun, peaking at 35 to 50 kilometres per second-considerably above the amplitude of the waves. These flows exceed classical velocity predictions of a few kilometres per second, challenging models of circulation in the corona and calling into question our understanding of how stars lose angular momentum and spin down as they age12-14.

9.
Nature ; 576(7786): 237-242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802007

RESUMO

During the solar minimum, when the Sun is at its least active, the solar wind1,2 is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind3 of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain4; theories and observations suggest that they may originate at the tips of helmet streamers5,6, from interchange reconnection near coronal hole boundaries7,8, or within coronal holes with highly diverging magnetic fields9,10. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvén-wave turbulence11,12, heating by reconnection in nanoflares13, ion cyclotron wave heating14 and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe15 at 36 to 54 solar radii that show evidence of slow Alfvénic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities10,16 that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind.

10.
Bone Joint J ; 100-B(12): 1609-1617, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30499322

RESUMO

AIMS: We present our experience of using a metal-backed prosthesis and autologous bone graft to treat gross glenoid bone deficiency. PATIENTS AND METHODS: A prospective cohort study of the first 45 shoulder arthroplasties using the SMR Axioma Trabecular Titanium (TT) metal-backed glenoid with autologous bone graft. Between May 2013 and December 2014, 45 shoulder arthroplasties were carried out in 44 patients with a mean age of 64 years (35 to 89). The indications were 23 complex primary arthroplasties, 12 to revise a hemiarthroplasty or resurfacing, five for aseptic loosening of the glenoid, and five for infection. RESULTS: Of the 45 patients, 16 had anatomical shoulder arthroplasties (ASA) and 29 had reverse shoulder arthroplasties (RSA). Postoperatively, 43/45 patients had a CT scan. In 41 of 43 patients (95%), the glenoid peg achieved > 50% integration. In 40 of 43 cases (93%), the graft was fully or partially integrated. There were seven revisions (16%) but only four (9%) required a change of baseplate. Four (25%) of the 16 ASAs were revised for instability or cuff failure. At two-year radiological follow-up, five of the 41 cases (11%) showed some evidence of lucent lines. CONCLUSION: The use of a metal baseplate with a trabecular titanium surface in conjunction with autologous bone graft is a reliable method of addressing glenoid bone defects in primary and revision RSA setting in the short term. ASAs have a higher rate of complications with this technique.


Assuntos
Artrite/cirurgia , Artroplastia de Substituição/métodos , Transplante Ósseo/métodos , Articulação do Ombro/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite/diagnóstico , Artrite/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Desenho de Prótese , Amplitude de Movimento Articular/fisiologia , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/fisiopatologia , Fatores de Tempo , Tomografia Computadorizada por Raios X , Transplante Autólogo , Resultado do Tratamento
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-666498

RESUMO

OBJECTIVE Over 30% of all new psychoactive substances identified by the UN Office on Drugs and Crime in 2016 were synthetic cannabinoids. The recent emergence of MAM-2201 on the illicit market is troubling because this drug has no precedent in either the scientific or patent literature, and appears to be a novel compound developed specifically as a ″graymarket″ drug of abuse bystruc?turally combining the known synthetic cannabinoids JWH- 122 and AM- 2201. There is currently no published information regarding the pharmacology of MAM-2201. METHODS The present studies characterized cannabinoid-like effects of MAM-2201 in vitro (interactions with cannabinoid type 1 receptors [CB1Rs]) and in vivo (in mice and rats). RESULTS In a radioligand binding assay using [3H]CP55,940 in HEK cell membranes transfected with the CB1R, MAM-2201 (Ki=5.4 nmol·L- 1), had higher binding affinity than WIN 55,212-2 (Ki=80 nmol·L-1), and D9-THC (Ki=8.3 nmol·L-1). The Emax values for MAM-2201 and WIN 55,212-2 in an assay of agonist inhibition of forskolin-stimulated cAMP were 85% (EC50=0.45 nmol·L-1) and 95%, respectively, as compared with the D9-THC Emax of 74%. In mice, MAM-2201 (0.003-1.0 mg·kg-1, IP) produced dose-dependent cannabimimetic effects which were both more potent and more effective than those of D9-THC. MAM-2201 and D9-THC dose-dependently produced hypothermia:ED50=0.287 and 25.4 mg·kg-1, analgesia: ED50=0.125 and 29.4 mg·kg-1, and catalepsy: ED50=0.301 and 18.9 mg·kg-1 in adult male CD1 mice. Importantly, MAM-2201 also elicited convulsant effects at a dose of 1.0 mg·kg-1 in 8/8 murine subjects. In rats, MAM-2201 produced dose-dependent D9-THC-like intero?ceptive effects in subjects trained to discriminate 3.0 mg·kg-1 (IP) D9-THC from saline. CONCLUSION MAM-2201 binds CB1Rs with high affinity and agonist efficacy, and functions as a potent cannabinoid agonist in vivo across several complementary measures of cannabinoid activity in two rodent species.

13.
J Hosp Infect ; 94(1): 48-51, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27392977

RESUMO

This study quantifies the relationship between hand hygiene and the frequency with which healthcare workers (HCWs) touch surfaces in patient rooms. Surface contacts and hand hygiene were recorded in a single-bed UK hospital ward for six care types. Surface contacts often formed non-random patterns, but hygiene before or after patient contact depends significantly on care type (P=0.001). The likelihood of hygiene correlated with the number of surface contacts (95% confidence interval 1.1-5.8, P=0.002), but not with time spent in the room. This highlights that a potential subconscious need for hand hygiene may have developed in HCWs, which may support and help focus future hygiene education programmes.


Assuntos
Atitude do Pessoal de Saúde , Infecção Hospitalar/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Higiene das Mãos/métodos , Controle de Infecções/métodos , Tato , Humanos , Quartos de Pacientes , Reino Unido
14.
Space Sci Rev ; 204(1-4): 49-82, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29755144

RESUMO

NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

15.
Phys Rev Lett ; 114(24): 245003, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26196982

RESUMO

We propose a self-similar kinetic theory of thermal conductivity in a magnetized plasma, and discuss its application to the solar wind. We study a collisional kinetic equation in a spatially expanding magnetic flux tube, assuming that the magnetic field strength, the plasma density, and the plasma temperature decline as power laws of distance along the tube. We demonstrate that the electron kinetic equation has a family of scale-invariant solutions for a particular relation among the magnetic-, density-, and temperature-scaling exponents. These solutions describe the heat flux as a function of the temperature Knudsen number γ, which we require to be constant along the flux tube. We observe that self-similarity may be realized in the solar wind; for the Helios data 0.3-1 AU we find that the scaling exponents for density, temperature, and heat flux are close to those dictated by scale invariance. We find steady-state solutions of the self-similar kinetic equation numerically, and show that these solutions accurately reproduce the electron strahl population seen in the solar wind, as well as the measured heat flux.

16.
Technology (Singap World Sci) ; 3(1): 1-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26167518

RESUMO

The liver performs many key functions, the most prominent of which is serving as the metabolic hub of the body. For this reason, the liver is the focal point of many investigations aimed at understanding an organism's toxicological response to endogenous and exogenous challenges. Because so many drug failures have involved direct liver toxicity or other organ toxicity from liver generated metabolites, the pharmaceutical industry has constantly sought superior, predictive in-vitro models that can more quickly and efficiently identify problematic drug candidates before they incur major development costs, and certainly before they are released to the public. In this broad review, we present a survey and critical comparison of in-vitro liver technologies along a broad spectrum, but focus on the current renewed push to develop "organs-on-a-chip". One prominent set of conclusions from this review is that while a large body of recent work has steered the field towards an ever more comprehensive understanding of what is needed, the field remains in great need of several key advances, including establishment of standard characterization methods, enhanced technologies that mimic the in-vivo cellular environment, and better computational approaches to bridge the gap between the in-vitro and in-vivo results.

17.
Geophys Res Lett ; 41(22): 8081-8088, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26074642

RESUMO

The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since [Formula: see text] and the perpendicular ion plasma beta is typically ß⊥i∼1. To address this, several exceptional intervals with ß⊥i≪1 and ß⊥i≫1 were investigated, during which these scales were well separated. It was found that for ß⊥i≪1 the break occurs at di and for ß⊥i≫1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.

19.
Phys Rev Lett ; 111(23): 235002, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476280

RESUMO

Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100 km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

20.
Phys Rev Lett ; 111(24): 241101, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483639

RESUMO

In situ observations of the solar wind frequently show the temperature of α particles (fully ionized helium) Tα to significantly differ from that of protons (ionized hydrogen) Tp. Many heating processes in the plasma act preferentially on α particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the Wind spacecraft's Faraday cups reveal that, at r=1.0 AU from the Sun, the observed values of the α-proton temperature ratio, θαp≡Tα/Tp, has a complex, bimodal distribution. This study applied a simple model for the radial evolution of θαp to these data to compute expected values of θαp at r=0.1 AU. These inferred θαp values have no trace of the bimodality seen in the θαp values measured at r=1.0 AU but are instead consistent with the actions of the known mechanisms for α-particle preferential heating. This result underscores the importance of collisional processes in the dynamics of the solar wind and suggests that similar mechanisms may lead to preferential α-particle heating in both slow and fast wind.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...