Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Diagnostics (Basel) ; 14(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893593

RESUMO

Atherosclerotic plaque buildup in the coronary and carotid arteries is pivotal in the onset of acute myocardial infarctions or cerebrovascular events, leading to heightened levels of illness and death. Atherosclerosis is a complex and multistep disease, beginning with the deposition of low-density lipoproteins in the arterial intima and culminating in plaque rupture. Modern technology favors non-invasive imaging techniques to assess atherosclerotic plaque and offer insights beyond mere artery stenosis. Among these, computed tomography stands out for its widespread clinical adoption and is prized for its speed and accessibility. Nonetheless, some limitations persist. The introduction of photon-counting computed tomography (PCCT), with its multi-energy capabilities, enhanced spatial resolution, and superior soft tissue contrast with minimal electronic noise, brings significant advantages to carotid and coronary artery imaging, enabling a more comprehensive examination of atherosclerotic plaque composition. This narrative review aims to provide a comprehensive overview of the main concepts related to PCCT. Additionally, we aim to explore the existing literature on the clinical application of PCCT in assessing atherosclerotic plaque. Finally, we will examine the advantages and limitations of this recently introduced technology.

2.
Circ Cardiovasc Imaging ; 17(6): e016274, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889214

RESUMO

BACKGROUND: This study aimed to develop and validate a computed tomography angiography based machine learning model that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with carotid atherosclerosis. METHODS: The machine learning based model was trained using degree of stenosis and the volumes of 13 computed tomography angiography derived intracarotid plaque subcomponents (eg, lipid, intraplaque hemorrhage, calcium) to identify plaques associated with cerebrovascular events. The model was internally validated through repeated 10-fold cross-validation and tested on a dedicated testing cohort according to discrimination and calibration. RESULTS: This retrospective, single-center study evaluated computed tomography angiography scans of 268 patients with both symptomatic and asymptomatic carotid atherosclerosis (163 for the derivation set and 106 for the testing set) performed between March 2013 and October 2019. The area-under-receiver-operating characteristics curve by machine learning on the testing cohort (0.89) was significantly higher than the areas under the curve of traditional logit analysis based on the degree of stenosis (0.51, P<0.001), presence of intraplaque hemorrhage (0.69, P<0.001), and plaque composition (0.78, P<0.001), respectively. Comparable performance was obtained on internal validation. The identified plaque components and associated cutoff values that were significantly associated with a higher likelihood of symptomatic status after adjustment were the ratio of intraplaque hemorrhage to lipid volume (≥50%, 38.5 [10.1-205.1]; odds ratio, 95% CI) and percentage of intraplaque hemorrhage volume (≥10%, 18.5 [5.7-69.4]; odds ratio, 95% CI). CONCLUSIONS: This study presented an interpretable machine learning model that accurately identifies symptomatic carotid plaques using computed tomography angiography derived plaque composition features, aiding clinical decision-making.


Assuntos
Doenças das Artérias Carótidas , Angiografia por Tomografia Computadorizada , Aprendizado de Máquina , Placa Aterosclerótica , Humanos , Angiografia por Tomografia Computadorizada/métodos , Masculino , Feminino , Estudos Retrospectivos , Placa Aterosclerótica/diagnóstico por imagem , Idoso , Pessoa de Meia-Idade , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/complicações , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Artérias Carótidas/diagnóstico por imagem , Índice de Gravidade de Doença
3.
Neuroradiol J ; : 19714009241252623, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718167

RESUMO

INTRODUCTION: In the current paper, the "carotid artery calcium score" method is presented with the target to offer a metric method to quantify the amount of calcification in the carotid artery. MODEL AND DEFINITION: The Volume of Interest (VOI) should be extracted and those voxels, with a Hounsfield Unit (HU) value ≥130, should be considered. The total weight value is determined by calculating the sum of the HU attenuation values of all voxels with values ≥130 HU. This value should be multiplied by the conversion factor ("or voxel size") and divided by a weighting factor, the attenuation threshold to consider a voxel as calcified (and therefore 130 HU): this equation determines the Carotid Artery Calcium Score (CACS). RESULTS: In order to provide the demonstration of the potential feasibility of the model, the CACS was calculated in 131 subjects (94 males; mean age 72.7 years) for 235 carotid arteries (in 27 subjects, unilateral plaque was present) considered. The CACS value ranged from 0.67 to 11716. A statistically significant correlation was found (rho value = 0.663, p value = .0001) between the CACS in the right and left carotid plaques. Moreover, a statistically significant correlation between the age and the total CACS was present (rho value = 0.244, p value = .005), whereas no statistically significant difference was found in the distribution of CACS by gender (p = .148). The CACS was also tested at baseline and after contrast and no statistically significant difference was found. CONCLUSION: In conclusion, this method is of easy application, and it weights at the same time the volume and the degree of calcification in a unique parameter. This method needs to be tested to verify its potential utility, similar to the coronary artery calcium score, for the risk stratification of the occurrence of cerebrovascular events of the anterior circulation. Further studies using this new diagnostic tool to determine the prognostic value of carotid calcium quantification are needed.

4.
AJNR Am J Neuroradiol ; 45(6): 802-808, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38637023

RESUMO

BACKGROUND AND PURPOSE: Systemic lupus erythematosus is a complex autoimmune disease known for its diverse clinical manifestations, including neuropsychiatric systemic lupus erythematosus, which impacts a patient's quality of life. Our aim was to explore the relationships among brain MR imaging morphometric findings, neuropsychiatric events, and laboratory values in patients with systemic lupus erythematosus, shedding light on potential volumetric biomarkers and diagnostic indicators for neuropsychiatric systemic lupus erythematosus. MATERIALS AND METHODS: Twenty-seven patients with systemic lupus erythematosus (14 with neuropsychiatric systemic lupus erythematosus, 13 with systemic lupus erythematosus), 24 women and 3 men (average age, 43 years, ranging from 21 to 62 years) were included in this cross-sectional study, along with 10 neuropsychiatric patients as controls. An MR imaging morphometric analysis, with the VolBrain online platform, to quantitatively assess brain structural features and their differences between patients with neuropsychiatric systemic lupus erythematosus and systemic lupus erythematosus, was performed. Correlations and differences between MR imaging morphometric findings and laboratory values, including disease activity scores, such as the Systemic Lupus Erythematosus Disease Activity Index and the Systemic Lupus International Collaborating Clinics Damage Index, were explored. An ordinary least squares regression analysis further explored the Systemic Lupus Erythematosus Disease Activity Index and Systemic Lupus International Collaborating Clinics Damage Index relationship with MR imaging features. RESULTS: For neuropsychiatric systemic lupus erythematosus and non-neuropsychiatric systemic lupus erythematosus, the brain regions with the largest difference in volumetric measurements were the insular central operculum volume (P value = .003) and the occipital cortex thickness (P = .003), which were lower in neuropsychiatric systemic lupus erythematosus. The partial correlation analysis showed that the most correlated morphometric features with neuropsychiatric systemic lupus erythematosus were subcallosal area thickness asymmetry (P < .001) and temporal pole thickness asymmetry (P = .011). The ordinary least squares regression analysis yielded an R 2 of 0.725 for the Systemic Lupus Erythematosus Disease Activity Index score, with calcarine cortex volume as a significant predictor, and an R 2 of 0.715 for the Systemic Lupus International Collaborating Clinics Damage Index score, with medial postcentral gyrus volume as a significant predictor. CONCLUSIONS: The MR imaging volumetric analysis, along with the correlation study and the ordinary least squares regression analysis, revealed significant differences in brain regions and their characteristics between patients with neuropsychiatric systemic lupus erythematosus and those with systemic lupus erythematosus, as well as between patients with different Systemic Lupus Erythematosus Disease Activity Index and Systemic Lupus International Collaborating Clinics Damage Index scores.


Assuntos
Vasculite Associada ao Lúpus do Sistema Nervoso Central , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Adulto , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico por imagem , Vasculite Associada ao Lúpus do Sistema Nervoso Central/patologia , Estudos Transversais , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lúpus Eritematoso Sistêmico/diagnóstico por imagem , Lúpus Eritematoso Sistêmico/complicações
5.
Cardiovasc Diagn Ther ; 13(3): 557-598, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37405023

RESUMO

The global mortality rate is known to be the highest due to cardiovascular disease (CVD). Thus, preventive, and early CVD risk identification in a non-invasive manner is vital as healthcare cost is increasing day by day. Conventional methods for risk prediction of CVD lack robustness due to the non-linear relationship between risk factors and cardiovascular events in multi-ethnic cohorts. Few recently proposed machine learning-based risk stratification reviews without deep learning (DL) integration. The proposed study focuses on CVD risk stratification by the use of techniques mainly solo deep learning (SDL) and hybrid deep learning (HDL). Using a PRISMA model, 286 DL-based CVD studies were selected and analyzed. The databases included were Science Direct, IEEE Xplore, PubMed, and Google Scholar. This review is focused on different SDL and HDL architectures, their characteristics, applications, scientific and clinical validation, along with plaque tissue characterization for CVD/stroke risk stratification. Since signal processing methods are also crucial, the study further briefly presented Electrocardiogram (ECG)-based solutions. Finally, the study presented the risk due to bias in AI systems. The risk of bias tools used were (I) ranking method (RBS), (II) region-based map (RBM), (III) radial bias area (RBA), (IV) prediction model risk of bias assessment tool (PROBAST), and (V) risk of bias in non-randomized studies-of interventions (ROBINS-I). The surrogate carotid ultrasound image was mostly used in the UNet-based DL framework for arterial wall segmentation. Ground truth (GT) selection is vital for reducing the risk of bias (RoB) for CVD risk stratification. It was observed that the convolutional neural network (CNN) algorithms were widely used since the feature extraction process was automated. The ensemble-based DL techniques for risk stratification in CVD are likely to supersede the SDL and HDL paradigms. Due to the reliability, high accuracy, and faster execution on dedicated hardware, these DL methods for CVD risk assessment are powerful and promising. The risk of bias in DL methods can be best reduced by considering multicentre data collection and clinical evaluation.

6.
Acta Radiol ; 64(8): 2347-2356, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37138467

RESUMO

BACKGROUND: No quantitative computed tomography (CT) biomarker is actually sufficiently accurate to assess Crohn's disease (CD) lesion activity, with adequate precision to guide clinical decisions. PURPOSE: To assess the available literature on the use of iodine concentration (IC), from multi-spectral CT acquisition, as a quantitative parameter able to distinguish healthy from affected bowel and assess CD bowel activity and heterogeneity of activity along the involved segments. MATERIAL AND METHODS: A literature search was conducted to identify original research studies published up to February 2022. The inclusion criteria were original research papers (>10 human participants), English language publications, focus on dual-energy CT (DECT) of CD with iodine quantification (IQ) as an outcome measure. The exclusion criteria were animal-only studies, languages other than English, review articles, case reports, correspondence, and study populations <10 patients. RESULTS: Nine studies were included in this review; all of which showed a strong correlation between IC measurements and CD activity markers, such as CD activity index (CDAI), endoscopy findings and simple endoscopic score for Crohn's disease (SES-CD), and routine CT enterography (CTE) signs and histopathologic score. Statistically significant differences in IC were reported between affected bowel segments and healthy ones (higher P value was P < 0.001), normal segments and those with active inflammation (P < 0.0001) as well as between patients with active disease and those in remission (P < 0.001). CONCLUSION: The mean normalized IC at DECTE could be a reliable tool in assisting radiologists in the diagnosis, classification and grading of CD activity.


Assuntos
Doença de Crohn , Iodo , Humanos , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/patologia , Tomografia Computadorizada por Raios X/métodos , Intestinos , Biomarcadores
7.
J Public Health Res ; 12(1): 22799036221149840, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36846303

RESUMO

Purpose: The standard bibliometric indexes ("m-quotient "H-," "H2-," "g-," "a-," "m-," and "r-" index) do not considered the research' position in the author list of the paper. We proposed a new methodology, System of Authorship Best Assessment (SABA), to characterize the scientific output based on authors' position. Material and Methods: Four classes S1A, S1B, S2A, and S2B include only papers where the researcher is in first, first/last, first/second/last, and first/second/second-last/last position respectively were used for the calculation of H-index and number of citations The system was tested with Noble prize winners controlled with researchers matched for H-index. The different in percentage between standard bibliometric index and S2B was calculated and compared. Results: The percentage differences in Noble prize winners between S2B-H-index versus Global H-index and number of citations is very lower comparing with control group (median 4.15% [adjusted 95% CI, 2.54-5.30] vs 9.00 [adjusted 95% CI, 7.16-11.84], p < 0.001; average difference 8.7% vs 20.3%). All different in percentage between standard bibliometric index and S2B except two (H2- and m-index) were significantly lower among Noble prize compared with control group. Conclusion: The SABA methodology better weight the research impact by showing that for excellent profiles the S2B is similar to global values whereas for other researchers there is a significant difference.

8.
Eur J Radiol ; 160: 110706, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701825

RESUMO

PURPOSE: The aims of our study were to investigate with cardiovascular magnetic resonance (CMR) the role of Epicardial Fat Volume (EFV) and distribution in patients with Takotsubo cardiomyopathy (TTC). Moreover, we explored EFV in patients with TTC and related this to comorbidities, cardiac biomarkers, and cardiac function. METHODS: This retrospective study performed CMR scans in 30 consecutive TTC patients and 20 healthy controls. The absolute amount of EFV was quantified in consecutive short-axis cine stacks through the modified Simpson's rule. In addition, the left atrio-ventricular groove (LV) and right ventricle (RV) Epicardial Fat Thickness (EFT) were measured as well. Besides epicardial fat, LV myocardial strain parameters and T2 mapping measurements were obtained. RESULTS: TTC patients and controls were of comparable age, sex, and body mass index. Compared to healthy controls, patients with TTC demonstrated a significantly increased EFV, epicardial fat mass, and EFV indexed for body 7surface area (p = 0.005; p = 0.003; p = 0.008; respectively). In a multiple regression model including age, sex, BMI, atrial fibrillation, and dyslipidemia, TTC remained an independent association with EFV (p = 0.008). Global T2 mapping and Global longitudinal strain in patients with TTC were correlated with EFV (r = 0.63, p = 0.001, and r = 0.44, p = 0.02, respectively). CONCLUSION: Patients with TTC have increased EFV compared to healthy controls, despite a similar body mass index. The amount of epicardial fat was associated with CMR markers of myocardial inflammation and subclinical contractile dysfunction.


Assuntos
Cardiomiopatia de Takotsubo , Humanos , Cardiomiopatia de Takotsubo/diagnóstico por imagem , Cardiomiopatia de Takotsubo/patologia , Estudos Retrospectivos , Pericárdio/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Imagem Cinética por Ressonância Magnética
9.
J Clin Med ; 11(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36431321

RESUMO

A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.

10.
Eur J Radiol ; 157: 110551, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279627

RESUMO

PURPOSE: The purpose of this narrative review is to describe the clinical applications of advanced computed tomography (CT) and magnetic resonance (MRI) techniques in patients affected by Crohn's disease (CD), giving insights about the added value of artificial intelligence (AI) in this field. METHODS: We performed a literature search comparing standardized and advanced imaging techniques for CD diagnosis. Cross-sectional imaging is essential for the identification of lesions, the assessment of active or relapsing disease and the evaluation of complications. RESULTS: The studies reviewed show that new advanced imaging techniques and new MRI sequences could be integrated into standard protocols, to achieve a reliable quantification of CD activity, improve the lesions' characterization and the evaluation of therapy response. These promising tools are: dual-energy CT (DECT) post-processing techniques, diffusion-weighted MRI (DWI-MRI), dynamic contrast-enhanced MRI (DCE-MRI), Magnetization Transfer MRI (MT-MRI) and CINE-MRI. Furthermore, AI solutions show a potential when applied to radiological techniques in these patients. Machine learning (ML) algorithms and radiomic features prove to be useful in improving the diagnostic accuracy of clinicians and in attempting a personalized medicine approach, stratifying patients by predicting their prognosis. CONCLUSIONS: Advanced imaging is crucial in the diagnosis, lesions' characterisation and in the estimation of the abdominal involvement in CD. New AI developments are promising tools that could support doctors in the management of CD affected patients.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/patologia , Inteligência Artificial , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste
11.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005433

RESUMO

The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.

12.
Cancers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36011048

RESUMO

Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of "radiomics and genomics" has been considered under the umbrella of "radiogenomics". Furthermore, AI in a radiogenomics' environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor's characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them.

13.
Diagnostics (Basel) ; 12(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35885449

RESUMO

Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.

14.
Diagnostics (Basel) ; 12(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741292

RESUMO

Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the "COVLIAS 2.0-cXAI" system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.

15.
Comput Biol Med ; 146: 105571, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35751196

RESUMO

BACKGROUND: COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. METHOD: ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. RESULTS: Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. CONCLUSIONS: Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.


Assuntos
COVID-19 , Aprendizado Profundo , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
16.
Diagnostics (Basel) ; 12(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35626389

RESUMO

Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.

17.
Diagnostics (Basel) ; 12(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626438

RESUMO

Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models­namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet­were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests­namely, the Mann−Whitney test, paired t-test, and Wilcoxon test­demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.

18.
Eur J Radiol ; 148: 110164, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35114535

RESUMO

SARS-COV 2 is recognized to be responsible for a multi-organ syndrome. In most patients, symptoms are mild. However, in certain subjects, COVID-19 tends to progress more severely. Most of the patients infected with SARS-COV2 fully recovered within some weeks. In a considerable number of patients, like many other viral infections, various long-lasting symptoms have been described, now defined as "long COVID-19 syndrome". Given the high number of contagious over the world, it is necessary to understand and comprehend this emerging pathology to enable early diagnosis and improve patents outcomes. In this scenario, AI-based models can be applied in long-COVID-19 patients to assist clinicians and at the same time, to reduce the considerable impact on the care and rehabilitation unit. The purpose of this manuscript is to review different aspects of long-COVID-19 syndrome from clinical presentation to diagnosis, highlighting the considerable impact that AI can have.


Assuntos
COVID-19 , Inteligência Artificial , COVID-19/complicações , Humanos , RNA Viral , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
19.
Stroke ; 53(1): 290-297, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753301

RESUMO

The role of calcium in atherosclerosis is controversial and the relationship between vascular calcification and plaque vulnerability is not fully understood. Although calcifications are present in ≈50% to 60% of carotid plaques, their association with cerebrovascular ischemic events remains unclear. In this review, we summarize current understanding of carotid plaque calcification. We outline the role of calcium in atherosclerotic carotid disease by analyzing laboratory studies and histopathologic studies, as well as imaging findings to understand clinical implications of carotid artery calcifications. Differences in mechanism of calcium deposition express themselves into a wide range of calcification phenotypes in carotid plaques. Some patterns, such as rim calcification, are suggestive of plaques with inflammatory activity with leakage of the vasa vasourm and intraplaque hemorrhage. Other patterns such as dense, nodular calcifications may confer greater mechanical stability to the plaque and reduce the risk of embolization for a given degree of plaque size and luminal stenosis. Various distributions and patterns of carotid plaque calcification, often influenced by the underlying systemic pathological condition, have a different role in affecting plaque stability. Modern imaging techniques afford multiple approaches to assess geometry, pattern of distribution, size, and composition of carotid artery calcifications. Future investigations with these novel technologies will further improve our understanding of carotid artery calcification and will play an important role in understanding and minimizing stroke risk in patients with carotid plaques.


Assuntos
Artérias Carótidas/patologia , Doenças das Artérias Carótidas/patologia , Estenose das Carótidas/patologia , Placa Aterosclerótica/patologia , Calcificação Vascular/patologia , Aterosclerose/complicações , Aterosclerose/patologia , Doenças das Artérias Carótidas/complicações , Estenose das Carótidas/complicações , Humanos , Placa Aterosclerótica/complicações
20.
Diagnostics (Basel) ; 11(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34943603

RESUMO

(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020-2021 were semiautomated or automated but not accurate, user-friendly, and industry-standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription-polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland-Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...