Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38248423

RESUMO

As membrane-mediated antibiotic resistance continues to evolve in Gram-positive bacteria, the development of new approaches to elucidate the membrane properties involved in antibiotic resistance has become critical. Membrane vesicles (MVs) secreted by the cytoplasmic membrane of Gram-positive bacteria contain native components, preserving lipid and protein diversity, nucleic acids, and sometimes virulence factors. Thus, MV-derived membrane platforms present a great model for Gram-positive bacterial membranes. In this work, we report the development of a planar bacterial cytoplasmic membrane-based biosensor using MVs isolated from the Bacillus subtilis WT strain that can be coated on multiple surface types such as glass, quartz crystals, and polymeric electrodes, fostering the multimodal assessment of drug-membrane interactions. Retention of native membrane components such as lipoteichoic acids, lipids, and proteins is verified. This biosensor replicates known interaction patterns of the antimicrobial compound, daptomycin, with the Gram-positive bacterial membrane, establishing the applicability of this platform for carrying out biophysical characterization of the interactions of membrane-acting antibiotic compounds with the bacterial cytoplasmic membrane. We report changes in membrane viscoelasticity and permeability that correspond to partial membrane disruption when calcium ions are present with daptomycin but not when these ions are chelated. This biomembrane biosensing platform enables an assessment of membrane biophysical characteristics during exposure to antibiotic drug candidates to aid in identifying compounds that target membrane disruption as a mechanism of action.


Assuntos
Antibacterianos , Daptomicina , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Membrana Celular , Íons
2.
ACS Biomater Sci Eng ; 9(6): 3632-3642, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37137156

RESUMO

The use of bacteriophages, viruses that specifically infect bacteria, as antibiotics has become an area of great interest in recent years as the effectiveness of conventional antibiotics recedes. The detection of phage interactions with specific bacteria in a rapid and quantitative way is key for identifying phages of interest for novel antimicrobials. Outer membrane vesicles (OMVs) derived from Gram-negative bacteria can be used to make supported lipid bilayers (SLBs) and therefore in vitro membrane models that contain naturally occurring components of the bacterial outer membrane. In this study, we employed Escherichia coli OMV derived SLBs and use both fluorescent imaging and mechanical sensing techniques to show their interactions with T4 phage. We also integrate these bilayers with microelectrode arrays (MEAs) functionalized with the conducting polymer PEDOT:PSS and show that the pore forming interactions of the phages with the SLBs can be monitored using electrical impedance spectroscopy. To highlight our ability to detect specific phage interactions, we also generate SLBs using OMVs derived from Citrobacter rodentium, which is resistant to T4 phage infection, and identify their lack of interaction with the phage. The work presented here shows how interactions occurring between the phages and these complex SLB systems can be monitored using a range of experimental techniques. We believe this approach can be used to identify phages that work against bacterial strains of interest, as well as more generally to monitor any pore forming structure (such as defensins) interacting with bacterial outer membranes, and thus aid in the development of next generation antimicrobials.


Assuntos
Bacteriófagos , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Escherichia coli , Antibacterianos/farmacologia
3.
ACS Appl Mater Interfaces ; 15(10): 12766-12776, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866935

RESUMO

As the threat of antibiotic resistance increases, there is a particular focus on developing antimicrobials against pathogenic bacteria whose multidrug resistance is especially entrenched and concerning. One such target for novel antimicrobials is the ATP-binding cassette (ABC) transporter MsbA that is present in the plasma membrane of Gram-negative pathogenic bacteria where it is fundamental to the survival of these bacteria. Supported lipid bilayers (SLBs) are useful in monitoring membrane protein structure and function since they can be integrated with a variety of optical, biochemical, and electrochemical techniques. Here, we form SLBs containing Escherichia coli MsbA and use atomic force microscopy (AFM) and structured illumination microscopy (SIM) as high-resolution microscopy techniques to study the integrity of the SLBs and incorporated MsbA proteins. We then integrate these SLBs on microelectrode arrays (MEA) based on the conducting polymer poly(3,4-ethylenedioxy-thiophene) poly(styrene sulfonate) (PEDOT:PSS) using electrochemical impedance spectroscopy (EIS) to monitor ion flow through MsbA proteins in response to ATP hydrolysis. These EIS measurements can be correlated with the biochemical detection of MsbA-ATPase activity. To show the potential of this SLB approach, we observe not only the activity of wild-type MsbA but also the activity of two previously characterized mutants along with quinoline-based MsbA inhibitor G907 to show that EIS systems can detect changes in ABC transporter activity. Our work combines a multitude of techniques to thoroughly investigate MsbA in lipid bilayers as well as the effects of potential inhibitors of this protein. We envisage that this platform will facilitate the development of next-generation antimicrobials that inhibit MsbA or other essential membrane transporters in microorganisms.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Técnicas Biossensoriais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Langmuir ; 38(29): 8773-8782, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35748045

RESUMO

The rise of antibiotic resistance is a growing worldwide human health issue, with major socioeconomic implications. An understanding of the interactions occurring at the bacterial membrane is crucial for the generation of new antibiotics. Supported lipid bilayers (SLBs) made from reconstituted lipid vesicles have been used to mimic these membranes, but their utility has been restricted by the simplistic nature of these systems. A breakthrough in the field has come with the use of outer membrane vesicles derived from Gram-negative bacteria to form SLBs, thus providing a more physiologically relevant system. These complex bilayer systems hold promise but have not yet been fully characterized in terms of their composition, ratio of natural to synthetic components, and membrane protein content. Here, we use correlative atomic force microscopy (AFM) with structured illumination microscopy (SIM) for the accurate mapping of complex lipid bilayers that consist of a synthetic fraction and a fraction of lipids derived from Escherichia coli outer membrane vesicles (OMVs). We exploit the high resolution and molecular specificity that SIM can offer to identify areas of interest in these bilayers and the enhanced resolution that AFM provides to create detailed topography maps of the bilayers. We are thus able to understand the way in which the two different lipid fractions (natural and synthetic) mix within the bilayers, and we can quantify the amount of bacterial membrane incorporated into the bilayer. We prove the system's tunability by generating bilayers made using OMVs engineered to contain a green fluorescent protein (GFP) binding nanobody fused with the porin OmpA. We are able to directly visualize protein-protein interactions between GFP and the nanobody complex. Our work sets the foundation for accurately understanding the composition and properties of OMV-derived SLBs to generate a high-resolution platform for investigating bacterial membrane interactions for the development of next-generation antibiotics.


Assuntos
Membrana Externa Bacteriana , Bicamadas Lipídicas , Antibacterianos , Escherichia coli , Proteínas de Fluorescência Verde , Humanos , Bicamadas Lipídicas/química , Microscopia de Força Atômica
5.
Biosens Bioelectron ; 204: 114045, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35180690

RESUMO

Antibiotic resistance is a growing global health concern due to the decreasing number of antibiotics available for therapeutic use as more drug-resistant bacteria develop. Changes in the membrane properties of Gram-negative bacteria can influence their response to antibiotics and give rise to resistance. Thus, understanding the interactions between the bacterial membrane and antibiotics is important for elucidating microbial membrane properties to use for designing novel antimicrobial drugs. To study bacterial membrane-antibiotic interactions, we created a surface-supported planar bacterial outer membrane model on an optically-transparent, conducting polymer surface (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)). This model enables membrane characterization using fluorescence microscopy and electrochemical impedance spectroscopy (EIS). The membrane platform is fabricated using outer membrane vesicles (OMVs) isolated from clinically relevant Gram-negative bacteria, enterohemorrhagic Escherichia coli. This approach enables us to mimic the native components of the bacterial membrane by incorporating native lipids, membrane proteins, and lipopolysaccharides. Using EIS, we determined membrane impedance and captured membrane-antibiotic interactions using the antibiotics polymyxin B, bacitracin, and meropenem. This sensor platform incorporates aspects of the biological complexity found in bacterial outer membranes and, by doing so, offers a powerful, biomimetic approach to the study of antimicrobial drug interactions.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa , Impedância Elétrica , Escherichia coli/química , Bactérias Gram-Negativas
6.
Toxicol Lett ; 340: 114-122, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33482275

RESUMO

Organophosphorus nerve agents (NAs) are the most lethal chemical warfare agents and have been used by state and non-state actors since their discovery in the 1930s. They covalently modify acetylcholinesterase, preventing the breakdown of acetylcholine (ACh) with subsequent loss of synaptic transmission, which can result in death. Despite the availability of several antidotes for OPNA exposure, none directly targets the nicotinic acetylcholine receptor (nAChR) mediated component of toxicity. Non-oxime bispyridinium compounds (BPDs) have been shown previously to partially counteract the effects of NAs at skeletal muscle tissue, and this has been attributed to inhibition of the muscle nAChR. Functional data indicate that, by increasing the length of the alkyl linker between the pyridinium moieties of BPDs, the antagonistic activity at nAChRs can be improved. Molecular dynamics simulations of the adult muscle nAChR in the presence of BPDs identified key residues likely to be involved in binding. Subsequent two-electrode voltage clamp recordings showed that one of the residues, εY131, acts as an allosteric determinant of BPD binding, and that longer BPDs have a greater stabilizing effect on the orthosteric loop C than shorter ones. The work reported will inform future design work on novel antidotes for treating NA exposure.


Assuntos
Antídotos/química , Antídotos/farmacologia , Agentes Neurotóxicos/toxicidade , Antagonistas Nicotínicos/toxicidade , Receptores Nicotínicos/metabolismo , Animais , Modelos Moleculares , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Conformação Proteica , Compostos de Piridínio , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...