Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979122

RESUMO

Vacuolar processing enzyme (VPE) is a cysteine protease responsible for vacuolar proteins' maturation and regulation of programmed cell death (PCD). Four isoforms of Arabidopsis thaliana VPEs were identified previously, but only the functions of ßVPE, γVPE, and δVPE were determined. The specific function of a gene is linked to the cis-acting elements in the promoter region. A promoter analysis found repetitive drought-related cis-elements in αVPE, which highlight its potential involvement in drought regulation in A. thaliana. The further co-expression network portraying genes interacting with αVPE substantiated its drought-regulation-related function. Expression of αVPE was upregulated after drought treatment in A. thaliana. To confirm the role of αVPE, a loss of function study revealed that αVPE knockout mutants remained green compared with WT after drought treatment. The mutants had reduced proline activity, decreased sucrose content, and lower MDA content, but increased photosynthetic pigments, indicating that αVPE negatively regulates drought tolerance in A. thaliana. Taken together, our findings serve as important evidence of the involvement of αVPE in modulating drought tolerance in A. thaliana.

2.
Genes Genet Syst ; 97(5): 247-256, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36631109

RESUMO

Obtaining high-quality nucleic acid extracted from seaweeds is notoriously difficult due to contamination with polysaccharides and polyphenolic compounds after cell disruption. Specific methods need to be employed for RNA isolation in different seaweed species, and therefore studies of the thiamine biosynthesis pathway have been limited. Two selected Malaysian species which are highly abundant and underutilized, namely Gracilaria sp. and Padina sp., representing the red and brown seaweeds, respectively, were collected to develop optimized total RNA extraction methods. Prior to that, DNA was extracted, and amplification of the 18S rRNA gene and the THIC gene (encoding the first enzyme in the pyrimidine branch of the thiamine biosynthesis pathway) from the DNA template was successful in Gracilaria sp. only. RNA was then extracted from both seaweeds using three different existing methods, with some modifications, using cetyltrimethylammonium bromide, guanidine thiocyanate and sodium dodecyl sulphate. Methods I and III proved to be efficient for Padina sp. and Gracilaria sp., respectively, for the extraction of highly purified RNA, with A260/A280 values of 2.0 and 1.8. However, amplification of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase and the THIC gene was successful in only Gracilaria sp. cDNA derived from extracted RNA. Further modifications are required to improve the exploitation of nucleic acids from brown seaweeds, which has been proven to be difficult. This work should pave the way for molecular studies of seaweeds generally and for the elucidation, specifically, of the thiamine biosynthesis pathway.


Assuntos
Gracilaria , Ácidos Nucleicos , Alga Marinha , Ácidos Nucleicos/metabolismo , Alga Marinha/metabolismo , RNA/metabolismo , Tiamina/metabolismo
3.
Chemosphere ; 313: 137377, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36457264

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are gaining worldwide attention because of their toxicity, bioaccumulative and resistance to biological degradation in the environment. PFAS can be categorised into endocrine disrupting chemicals (EDCs) and identified as possible carcinogenic agents for the aquatic ecosystem and humans. Despite this, only a few studies have been conducted on the aquatic toxicity of PFAS, particularly in invertebrate species such as zooplankton. This study evaluated the acute toxicity of two main PFAS, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), by using freshwater cladocerans (Moina micrura) as bioindicators. This study aimed to assess the adverse effects at different levels of organisations such as organ (heart size and heart rate), individual (individual size and mortality) and population (lethal concentration, LC50). PFOA was shown to be more hazardous than PFOS, with the LC50 values (confidence interval) of 474.7 (350.4-644.5) µg L-1 and 549.6 (407.2-743.9) µg L-1, respectively. As the concentrations of PFOS and PFOA increased, there were declines in individual size and heart rate as compared to the control group. The values of PNECs acquired by using the AF method (PNECAF) for PFOA and PFOS were 0.4747 and 0.5496 µg L-1, respectively. Meanwhile, the PNEC values obtained using the SSD method (PNECSSD) were 1077.0 µg L-1 (PFOA) and 172.5 µg L-1 (PFOS). PNECAF is more protective and conservative compared to PNECSSD. The findings of this study have significant implications for PFOS and PFOA risk assessment in aquatic environments. Thus, it will aid freshwater sustainability and safeguard the human dependency on water resources.


Assuntos
Ácidos Alcanossulfônicos , Cladocera , Fluorocarbonos , Animais , Humanos , Ecossistema , Fluorocarbonos/toxicidade , Medição de Risco , Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade
4.
Sci Rep ; 12(1): 19639, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385165

RESUMO

Banana (Musa acuminata) is an important fruit crop and source of income for various countries, including Malaysia. To date, current agrochemical practice has become a disputable issue due to its detrimental effect on the environment. λ-carrageenan, a natural polysaccharide extracted from edible red seaweed, has been claimed to be a potential plant growth stimulator. Hence, the present study investigates the effects of λ-carrageenan on plant growth using Musa acuminata cv. Berangan (AAA). Vegetative growth such as plant height, root length, pseudostem diameter, and fresh weight was improved significantly in λ-carrageenan-treated banana plants at an optimum concentration of 750 ppm. Enhancement of root structure was also observed in optimum λ-carrageenan treatment, facilitating nutrients uptake in banana plants. Further biochemical assays and gene expression analysis revealed that the increment in growth performance was consistent with the increase of chlorophyll content, protein content, and phenolic content, suggesting that λ-carrageenan increases photosynthesis rate, protein biosynthesis, and secondary metabolites biosynthesis which eventually stimulate growth. Besides, λ-carrageenan at optimum concentration also increased catalase and peroxidase activities, which led to a significant reduction in hydrogen peroxide and malondialdehyde, maintaining cellular homeostasis in banana plants. Altogether, λ-carrageenan at optimum concentration improves the growth of banana plants via inducing metabolic processes, enhancing nutrient uptake, and regulation of cell homeostasis. Further investigations are needed to evaluate the effectiveness of λ-carrageenan on banana plants under field conditions.


Assuntos
Musa , Musa/genética , Carragenina/farmacologia , Carragenina/metabolismo , Desenvolvimento Vegetal , Nutrientes , Homeostase
5.
Molecules ; 26(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833937

RESUMO

Flavonoids are some of the most precious phytochemicals, believed to be found largely in terrestrial plants. With the advancement of phytochemical research and marine bioprospecting, flavonoids have also been reported by the research of microalgae and macroalgae. High growth rate with minimal nutritional and growth requirement, saving arable land and rich metabolic profile make microalgae an excellent repertoire of novel anticancer compounds, such as flavonoids. In addition, marine algae, especially seaweeds contain different types of flavonoids which are assumed to have unique chemical structures and bioactivities than their terrestrial counterparts. Flavonoids are not only good antioxidants but also have the abilities to kill cancer cells by inducing apoptosis and autophagy. However, the study of the anticancer properties of flavonoids is largely limited to terrestrial plants. This review offers an insight into the distribution of different classes of flavonoids in eukaryotic microalgae, cyanobacteria and seaweeds with their possible anticancer activities. In addition, extraction and purification methods of these flavonoids have been highlighted. Finally, prospects and challenges to use algal flavonoids as anticancer agents have been discussed.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Microalgas/química , Alga Marinha/química , Animais , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Flavonoides/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico
6.
PLoS One ; 16(5): e0251514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33974665

RESUMO

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have reached epidemic proportions globally. Therefore, there is an urgent need for a continuous supply of antibiotics to combat the problem. In this study, bacteria initially identified as species belonging to the Bacillus amyloliquefaciens operational group were re-identified based on the housekeeping gene, gyrB. Cell-free supernatants (CFS) from the strains were used for antimicrobial tests using the agar well diffusion assay against MRSA and various types of pathogenic bacteria. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and physicochemical characteristics of the CFS were determined. Based on gyrB sequence analysis, five strains (PD9, B7, PU1, BP1 and L9) were identified as Bacillus velezensis. The CFS of all B. velezensis strains showed broad inhibitory activities against Gram-negative and -positive as well as MRSA strains. Strain PD9 against MRSA ATCC 33742 was chosen for further analysis as it showed the biggest zone of inhibition (21.0 ± 0.4 mm). The MIC and MBC values obtained were 125 µl/ml. The crude antimicrobial extract showed bactericidal activity and was stable at various temperatures (40-80°C), pH (4-12), surfactants (Tween 20, Tween 80, SDS and Triton X-100) and metal ions (MgCI2, NaCI2, ZnNO3 and CuSO4) when tested. However, the crude extract was not stable when treated with proteinase K. All these properties resembled the characteristics of peptides. The antimicrobial compound from the selected strain was purified by using solvent extraction method and silica gel column chromatography. The purified compound was subjected to High Performance Liquid Chromatography which resulted in a single peak of the anti-MRSA compound being detected. The molecular weight of the anti-MRSA compound was determined by using SDS-PAGE and zymogram. The size of the purified antimicrobial peptide was approximately ~ 5 kDa. The antimicrobial peptide produced from B. velezensis strain PD9 is a promising alternative to combat the spread of MRSA infections in the future.


Assuntos
Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Bacillus/metabolismo , Abelhas/microbiologia , Staphylococcus aureus Resistente à Meticilina , 1-Butanol , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus/genética , Proteínas de Bactérias/genética , Fracionamento Celular , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Meios de Cultivo Condicionados/farmacologia , DNA Girase/genética , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
7.
Bioengineered ; 11(1): 1071-1079, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32993460

RESUMO

NANNOCHLOROPSIS: sp. is a green alga that is widely used in the aquaculture industry as a feed in Malaysia, but genetic engineering studies of this alga are still underexplored even though there is a growing interest in microalgae genetic engineering for various industrial purposes. This study aims to investigate the efficiency of three transformation methods normally done on microalgae, namely polyethylene glycol (PEG), electroporation, and glass beads on Malaysian indigenous Nannochloropsis sp. using two commercially available plasmids, pUC19 and pGEM-T easy vector as well as an amplicon of ampicillin resistance (AMPR) gene. In this study, out of three transformation methods tested, positive transformants of Nannochloropsis sp. were successfully obtained via electroporation method. Further verification via polymerase chain reaction (PCR) and sequencing confirmed that the electroporation method was found to be the sole successful method in producing transgenic lines of our locally isolated Nannochloropsis sp. Results from this study proved the efficiency of electroporation for delivery of transgene to this green alga which has been reported to be tedious. The described method also provides the gateway for developing Nannochloropsis sp. as a delivery system to aquatic organism due to its importance in the industry.


Assuntos
Microalgas/metabolismo , Transformação Genética/fisiologia , Aquicultura , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Eletroporação , Microalgas/genética , Reação em Cadeia da Polimerase , Transformação Genética/genética
8.
Molecules ; 25(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731323

RESUMO

Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.


Assuntos
Chalcona/análogos & derivados , Citotoxinas/farmacologia , Flavonoides/farmacologia , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Peixe-Zebra/metabolismo , Animais , Chalcona/farmacologia , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Peixe-Zebra/metabolismo
9.
PLoS One ; 15(7): e0235431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726320

RESUMO

The oil palm (Elaeis guineensis) is an important crop in Malaysia but its productivity is hampered by various biotic and abiotic stresses. Recent studies suggest the importance of signalling molecules in plants in coping against stresses, which includes thiamine (vitamin B1). Thiamine is an essential microelement that is synthesized de novo by plants and microorganisms. The active form of thiamine, thiamine pyrophosphate (TPP), plays a prominent role in metabolic activities particularly as an enzymatic cofactor. Recently, thiamine biosynthesis pathways in oil palm have been characterised but the search of novel regulatory element known as riboswitch is yet to be done. Previous studies showed that thiamine biosynthesis pathway is regulated by an RNA element known as riboswitch. Riboswitch binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. TPP binds specifically to TPP riboswitch to regulate thiamine biosynthesis through a variety of mechanisms found in archaea, bacteria and eukaryotes. This study was carried out to hunt for TPP riboswitch in oil palm thiamine biosynthesis gene. Riboswitch detection software like RiboSW, RibEx, Riboswitch Scanner and Denison Riboswitch Detector were utilised in order to locate putative TPP riboswitch in oil palm ThiC gene sequence that encodes for the first enzyme in the pyrimidine branch of the pathway. The analysis revealed a 192 bp putative TPP riboswitch located at the 3' untranslated region (UTR) of the mRNA. Further comparative gene analysis showed that the 92-nucleotide aptamer region, where the metabolite binds was conserved inter-species. The secondary structure analysis was also carried out using Mfold Web server and it showed a stem-loop structure manifested with stems (P1-P5) with minimum free energy of -12.26 kcal/mol. Besides that, the interaction of riboswitch and its ligand was determined using isothermal titration calorimetry (ITC) and it yielded an exothermic reaction with 1:1 stoichiometry interaction with binding affinities of 0.178 nM, at 30°C. To further evaluate the ability of riboswitch to control the pathway, exogenous thiamine was applied to four months old of oil palm seedlings and sampling of spear leaves tissue was carried out at days 0, 1, 2 and 3 post-treatment for expression analysis of ThiC gene fragment via quantitative polymerase chain reaction (qPCR). Results showed an approximately 5-fold decrease in ThiC gene expression upon application of exogenous thiamine. Quantification of thiamine and its derivatives was carried out via HPLC and the results showed that it was correlated to the down regulation of ThiC gene expression. The application of exogenous thiamine to oil palm affected ThiC gene expression, which supported the prediction of the presence of TPP riboswitch in the gene. Overall, this study provides the first evidence on the presence, binding and the functionality of TPP riboswitch in oil palm. This study is hoped to pave a way for better understanding on the regulation of thiamine biosynthesis pathway in oil palm, which can later be exploited for various purposes especially in manipulation of thiamine biosynthesis pathways in combating stresses in oil palm.


Assuntos
Arecaceae/genética , Riboswitch/genética , Tiamina Pirofosfato/genética , Tiamina/genética , Arecaceae/crescimento & desenvolvimento , Ligantes , Malásia , Óleo de Palmeira/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...