Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 84(10): 1177-1185, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31694513

RESUMO

It was previously shown that hemagglutinin residues Thr155, Glu158, and Ser228 are crucial for the recognition of Neu5Gc. In this study, we demonstrated that the ability to bind the Neu5Gc-terminated receptor is related to the amino acid 145: viruses of years 1972-1999 with Lys145 bind to the receptor, whereas viruses with Asn145 do not. Sporadic appearance and disappearance of the ability to bind Neu5Gc oligosaccharides and the absence of Neu5Gc in the composition of human glycoconjugates indicate the non-adaptive nature of this ability. It was previously shown that unlike H1N1 viruses, H3N2 viruses of years 1968-1989 did not distinguish between Neu5Acα2-6Galß1-4Glc (6'SL) and Neu5Acα2-6Galß1-4GlcNAc (6'SLN). H3N2 viruses isolated after 1993 have acquired the ability to distinguish between 6'SL and 6'SLN, similarly to H1N1 viruses. We found that the affinity for 6'SLN has gradually increased from 1992 to 2003. After 2003, the viruses lost the ability to bind a number of sialosides, including 6'SL, that were good receptors for earlier H3N2 viruses, and retained high affinity for 6'SLN only, which correlated with the acquisition of new glycosylation sites at positions 122, 133, and 144, as well as Glu190Asp and Gly225Asp substitutions, in hemagglutinin. These substitutions are also responsible for the receptor-binding phenotype of human H1N1 viruses. We conclude that the convergent evolution of the receptor specificity of the H1N1 and H3N2 viruses indicates that 6'SLN is the optimal natural human receptor for influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H3N2/química , Receptores Virais/química , Sítios de Ligação , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Receptores Virais/sangue
2.
Transbound Emerg Dis ; 64(1): 144-156, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25892457

RESUMO

Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate diagnostic testing and detect novel influenza strains.


Assuntos
Galinhas , Surtos de Doenças/veterinária , Patos , Gansos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Adolescente , Adulto , Idoso , Animais , Bangladesh/epidemiologia , Criança , Feminino , Humanos , Influenza Aviária/mortalidade , Influenza Aviária/virologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Filogenia , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/virologia , Análise de Sequência de DNA/veterinária , Adulto Jovem
3.
Antimicrob Agents Chemother ; 58(4): 2045-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24449767

RESUMO

Since 2011, outbreaks caused by influenza A(H3N2) variant [A(H3N2)v] viruses have become a public health concern in the United States. The A(H3N2)v viruses share the A(H1N1)pdm09 M gene containing the marker of M2 blocker resistance, S31N, but do not contain any known molecular markers associated with resistance to neuraminidase (NA) inhibitors (NAIs). Using a fluorescent NA inhibition (NI) assay, the susceptibilities of recovered A(H3N2)v viruses (n=168) to FDA-approved (oseltamivir and zanamivir) and other (peramivir, laninamivir, and A-315675) NAIs were assessed. All A(H3N2)v viruses tested, with the exception of a single virus strain, A/Ohio/88/2012, isolated from an untreated patient, were susceptible to the NAIs tested. The A/Ohio/88/2012 virus contained two rare substitutions, S245N and S247P, in the NA and demonstrated reduced inhibition by oseltamivir (31-fold) and zanamivir (66-fold) in the NI assay. Using recombinant NA (recNA) proteins, S247P was shown to be responsible for the observed altered NAI susceptibility, in addition to an approximately 60% reduction in NA enzymatic activity. The S247P substitution has not been previously reported as a molecular marker of reduced susceptibility to the NAIs. Using cell culture assays, the investigational antiviral drugs nitazoxanide, favipiravir, and fludase were shown to inhibit the replication of A(H3N2)v viruses, including the virus with the S247P substitution in the NA. This report demonstrates the importance of continuous monitoring of susceptibility of zoonotic influenza viruses to available and investigational antiviral drugs.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Ácidos Carbocíclicos , Animais , Ciclopentanos/farmacologia , Cães , Guanidinas/farmacologia , Humanos , Células Madin Darby de Rim Canino , Oseltamivir/farmacologia , Piranos , Ácidos Siálicos , Estados Unidos , Replicação Viral/efeitos dos fármacos , Zanamivir/análogos & derivados , Zanamivir/farmacologia
4.
Clin Infect Dis ; 52 Suppl 1: S36-43, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21342897

RESUMO

Diagnostic tests for detecting emerging influenza virus strains with pandemic potential are critical for directing global influenza prevention and control activities. In 2008, the Centers for Disease Control and Prevention received US Food and Drug Administration approval for a highly sensitive influenza polymerase chain reaction (PCR) assay. Devices were deployed to public health laboratories in the United States and globally. Within 2 weeks of the first recognition of 2009 pandemic influenza H1N1, the Centers for Disease Control and Prevention developed and began distributing a new approved pandemic influenza H1N1 PCR assay, which used the previously deployed device platform to meet a >8-fold increase in specimen submissions. Rapid antigen tests were widely used by clinicians at the point of care; however, test sensitivity was low (40%-69%). Many clinical laboratories developed their own pandemic influenza H1N1 PCR assays to meet clinician demand. Future planning efforts should identify ways to improve availability of reliable testing to manage patient care and approaches for optimal use of molecular testing for detecting and controlling emerging influenza virus strains.


Assuntos
Controle de Doenças Transmissíveis/métodos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Pandemias/prevenção & controle , Reação em Cadeia da Polimerase/métodos , Virologia/métodos , Centers for Disease Control and Prevention, U.S. , Técnicas de Laboratório Clínico/métodos , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Estados Unidos/epidemiologia
5.
Arch Virol ; 156(1): 37-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20882306

RESUMO

Domestic ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. In this study, two H5N1 HPAI viruses belonging to clade 2.2.1 isolated in Egypt in 2007 and 2008 were analyzed for their pathogenicity in domestic Pekin ducks. Both viruses produced clinical signs and mortality, but the 2008 virus was more virulent, inducing early onset of neurological signs and killing all ducks with a mean death time (MDT) of 4.1 days. The 2007 virus killed 3/8 ducks with a MDT of 7 days. Full-genome sequencing and phylogenetic analysis were used to examine differences in the virus genes that might explain the differences observed in pathogenicity. The genomes differed in 49 amino acids, with most of the differences found in the hemagglutinin protein. This increase in pathogenicity in ducks observed with certain H5N1 HPAI viruses has implications for the control of the disease, since vaccinated ducks infected with highly virulent strains shed viruses for longer periods of time, perpetuating the virus in the environment and increasing the possibility of transmission to susceptible birds.


Assuntos
Patos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Animais , Encéfalo/virologia , Egito/epidemiologia , Coração/virologia , Hemaglutininas/genética , Influenza Aviária/epidemiologia , Pulmão/virologia , Músculo Esquelético/virologia , Neuraminidase/genética , Filogenia , Baço/virologia , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...