Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Appl ; 112019.
Artigo em Inglês | MEDLINE | ID: mdl-31579303

RESUMO

Bubbles have a rich history as transducers in particle-physics experiments. In a solid-state analogue, we use bubble domains in nanomagnetic films to measure magnetic nanoparticles. This technique can determine the magnetic orientation of a single nanoparticle in a fraction of a second and generate a full hysteresis loop in a few seconds. We achieve this high throughput by tuning the nanomagnetic properties of the films, including the Dzyaloshinskii-Moriya interaction, in an application of topological protection from the skyrmion state to a nanoparticle sensor. We develop the technique on nickel-iron nanorods and iron-oxide nanoparticles, which delineate a wide range of properties and applications. Bubble magnetometry enables precise statistical analysis of the magnetic hysteresis of dispersed nanoparticles, and direct measurement of a transition from superparamagnetic behavior as single nanoparticles to collective behavior in nanoscale agglomerates. These results demonstrate a practical capability for measuring the heterogeneity and interaction of magnetic nanoparticles.

2.
Phys Rev B ; 94(9)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27957557

RESUMO

We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal in the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.

3.
Nat Commun ; 6: 8462, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446515

RESUMO

The topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. The imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

4.
ACS Nano ; 8(8): 8300-9, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25019966

RESUMO

We measure the microvortical flows around gold nanorods propelled by ultrasound in water using polystyrene nanoparticles as optical tracers. We infer the rotational frequencies of such nanomotors assuming a hydrodynamic model of this interaction. In this way, we find that nanomotors rotate around their longitudinal axes at frequencies of up to ≈ 2.5 kHz, or ≈ 150 000 rpm, in the planar pressure node of a half-wavelength layered acoustic resonator driven at ≈ 3 MHz with an acoustic energy density of <10 J·m(-3). The corresponding tangential speeds of up to ≈ 2.5 mm·s(-1) at a nanomotor radius of ≈ 160 nm are 2 orders of magnitude faster than the translational speeds of up to ≈ 20 µm·s(-1). We also find that rotation and translation are independent modes of motion within experimental uncertainty. Our study is an important step toward understanding the behavior and fulfilling the potential of this dynamic nanotechnology for hydrodynamically interacting with biological media, as well as other applications involving nanoscale transport, mixing, drilling, assembly, and rheology. Our results also establish the fastest reported rotation of a nanomotor in aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...