Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1866(9): 963-972, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29857161

RESUMO

Protein engineering by directed evolution can alter proteins' structures, properties, and functions. However, membrane proteins, despite their importance to living organisms, remain relatively unexplored as targets for protein engineering and directed evolution. This gap in capabilities likely results from the tendency of membrane proteins to aggregate and fail to overexpress in bacteria cells. For example, the membrane protein caveolin-1 has been implicated in many cell signaling pathways and diseases, yet the full-length protein is too aggregation-prone for detailed mutagenesis, directed evolution, and biophysical characterization. Using a phage-displayed library of full-length caveolin-1 variants, directed evolution with alternating subtractive and functional selections isolated a full-length, soluble variant, termed cavsol, for expression in E. coli. Cavsol folds correctly and binds to its known protein ligands HIV gp41, the catalytic domain of cAMP-dependent protein kinase A, and the polymerase I and transcript release factor. As expected, cavsol does not bind off-target proteins. Cellular studies show that cavsol retains the parent protein's ability to localize at the cellular membrane. Unlike truncated versions of caveolin, cavsol forms large, oligomeric complexes consisting of approximately >50 monomeric units without requiring additional cellular components. Cavsol's secondary structure is a mixture of α-helices and ß-strands. Isothermal titration calorimetry experiments reveal that cavsol binds to gp41 and PKA with low micromolar binding affinity (KD). In addition to the insights into caveolin structure and function, the approach applied here could be generalized to other membrane proteins.


Assuntos
Caveolina 1/química , Domínio Catalítico , Caveolina 1/análise , Caveolina 1/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/química , Evolução Molecular Direcionada , Escherichia coli/genética , Proteína gp41 do Envelope de HIV/química , Humanos , Biblioteca de Peptídeos , Domínios Proteicos , Engenharia de Proteínas , Dobramento de Proteína , Proteínas de Ligação a RNA/química , Transdução de Sinais , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...