Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1341842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435695

RESUMO

As the climate changes, global systems have become increasingly unstable and unpredictable. This is particularly true for many disease systems, including subtypes of highly pathogenic avian influenzas (HPAIs) that are circulating the world. Ecological patterns once thought stable are changing, bringing new populations and organisms into contact with one another. Wild birds continue to be hosts and reservoirs for numerous zoonotic pathogens, and strains of HPAI and other pathogens have been introduced into new regions via migrating birds and transboundary trade of wild birds. With these expanding environmental changes, it is even more crucial that regions or counties that previously did not have surveillance programs develop the appropriate skills to sample wild birds and add to the understanding of pathogens in migratory and breeding birds through research. For example, little is known about wild bird infectious diseases and migration along the Mediterranean and Black Sea Flyway (MBSF), which connects Europe, Asia, and Africa. Focusing on avian influenza and the microbiome in migratory wild birds along the MBSF, this project seeks to understand the determinants of transboundary disease propagation and coinfection in regions that are connected by this flyway. Through the creation of a threat reduction network for avian diseases (Avian Zoonotic Disease Network, AZDN) in three countries along the MBSF (Georgia, Ukraine, and Jordan), this project is strengthening capacities for disease diagnostics; microbiomes; ecoimmunology; field biosafety; proper wildlife capture and handling; experimental design; statistical analysis; and vector sampling and biology. Here, we cover what is required to build a wild bird infectious disease research and surveillance program, which includes learning skills in proper bird capture and handling; biosafety and biosecurity; permits; next generation sequencing; leading-edge bioinformatics and statistical analyses; and vector and environmental sampling. Creating connected networks for avian influenzas and other pathogen surveillance will increase coordination and strengthen biosurveillance globally in wild birds.

2.
Zookeys ; 1168: 77-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415714

RESUMO

This checklist reports 47 species of Psocoptera from 15 families and three suborders from Georgia, of which 31 species are recorded for the first time, increasing the known fauna of the country by more than 65%. Of these, 37 species have been barcoded, representing 210 Barcode Identification Numbers (BINs). An additional 14 species are expected to occur in Georgia but remain undiscovered, meaning that only ≈ 77% of the fauna is currently documented. Barcodes, comments on distributions, and images of voucher specimens are given followed by a map of the sampling sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...