Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Immunol ; 135: 268-275, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940513

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have triggered global pandemic that continue to impact adversely human health. New understanding has emerged about the innate and adaptive immune responses elicited in SARS-CoV-2 infection. The understanding of innate immune responses generated in hosts early in SARS-CoV-2 infection is vital for treatment efforts. Antiviral cytokines are released by innate immune cells in response to viral infections that play a pivotal role in limiting viral replication, pathology and generating optimal adaptive immune responses alongside the long-term memory responses against reinfections. One aspect of innate immune response generated against SARS-CoV-2 in vivo and which has received much attention has been high proinflammatory cytokine release in COVID-19 patients. Another vital discovery has been that the antiviral cytokine type I Interferon (IFN) family IFN-α mediates upregulation of angiotensin converting enzyme 2 (ACE2) membrane protein in airway epithelial cells. ACE2 is a receptor that SARS-CoV-2 binds to infect host cells. New understanding has emerged about the mechanism of SARS-CoV-2 induced exaggerated proinflammatory cytokine release as well as transcriptional regulation of ACE2. This review discusses various mechanisms underlying SARS-CoV-2 induced exaggerated proinflammatory cytokine response as well as transcriptional regulation of ACE2 receptor. We further elaborate on adaptive and memory responses generated against SARS-CoV-2.


Assuntos
COVID-19/imunologia , Citocinas/imunologia , Imunidade Inata , Memória Imunológica , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/patologia , Humanos , Ativação Transcricional/imunologia
2.
Oncoimmunology ; 9(1): 1747349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363117

RESUMO

Exhaustion cripples T cell effector responses against metastatic cancers and chronic infections alike. There has been considerable interest in understanding the molecular and cellular mechanisms driving T cell exhaustion in human cancers fueled by the success of immunotherapy drugs especially the checkpoint receptor blockade (CRB) inhibitory antibodies that reverses T cell functional exhaustion. The current understanding of molecular mechanism of T cell exhaustion has been elucidated from the studies utilizing murine models of chronic viral infections. These studies have formed the basis for much of our understanding of the process of exhaustion and proven vital to developing anti-exhaustion therapies against human cancers. In this review, we discuss the T cell exhaustion differentiation pathway in cancers and chronic viral infections and explore how the transcription factors expression dynamics play role in T cell exhaustion fate choices and maturation. Finally, we summarize the role of some of the most important transcription factors involved in T cell functional exhaustion and construct exhaustion specific signaling pathway maps.


Assuntos
Neoplasias , Linfócitos T , Animais , Humanos , Imunoterapia , Ativação Linfocitária , Camundongos , Neoplasias/tratamento farmacológico , Fatores de Transcrição
3.
Genes Immun ; 20(3): 224-233, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29740197

RESUMO

Only few genes have been confidently identified to be involved in the Follicular (FO) and Marginal Zone (MZ) B cell differentiation, migration, and retention in the periphery. Our group previously observed that IKKα kinase inactive mutant mice IKKαK44A/K44A have significantly lower number of MZ B cells whereas FO B cell numbers appeared relatively normal. Because kinase dead IKKα can retain some of its biological functions that may interfere in revealing its actual role in the MZ and FO B cell differentiation. Therefore, in the current study, we genetically deleted IKKα from the pro-B cell lineage that revealed novel functions of IKKα in the MZ and FO B lymphocyte development. The loss of IKKα produces a significant decline in the percentage of immature B lymphocytes, mature marginal zone B cells, and follicular B cells along with a severe disruption of splenic architecture of marginal and follicular zones. IKKα deficiency affect the recirculation of mature B cells through bone marrow. A transplant of IKKα knockout fetal liver cells into Rag-/- mice shows a significant reduction compared to control in the B cells recirculating through bone marrow. To reveal the genes important in the B cell migration, a high throughput gene expression analysis was performed on the IKKα deficient recirculating mature B cells (B220+IgMhi). That revealed significant changes in the expression of genes involved in the B lymphocyte survival, homing and migration. And several among those genes identified belong to G protein family. Taken together, this study demonstrates that IKKα forms a vial axis controlling the genes involved in MZ and FO B cell differentiation and migration.


Assuntos
Linfócitos B/metabolismo , Diferenciação Celular , Quinase I-kappa B/genética , Animais , Linfócitos B/citologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem da Célula , Movimento Celular , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Quinase I-kappa B/deficiência , Quinase I-kappa B/metabolismo , Camundongos , Baço/citologia , Baço/metabolismo
4.
iScience ; 2: 105-122, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-30428369

RESUMO

T cells infiltrate affected organs in chronic infections and malignancy, but they may fail to eradicate virus-infected cells or tumor because of exhaustion. This report describes a Yin Yang-1 (YY1)-centered mechanism for diverse components that have been correlated with exhaustion. Utilizing an in vitro reconstruction of chronic T cell activation, YY1 is shown to positively regulate the checkpoint receptors PD1, Lag3, and Tim3 and to negatively regulate the type I cytokines interleukin-2 (IL-2) (in collaboration with Ezh2 histone methyltransferase) and interferon gamma (IFN-?). Other tests suggest that IL-2 failure drives a large component of cytotoxic functional decline rather than solely checkpoint receptor-ligand interactions that have been the focus of current anti-exhaustion therapies. Clinical evaluations confirm elevated YY1 and Ezh2 in melanoma tumor-infiltrating lymphocytes and in PD1+ T cells in patients with HIV. Exhaustion is revealed to be an active process as the culmination of repetitive two-signal stimulation in a feedback loop via CD3/CD28?p38MAPK/JNK?YY1? exhaustion.

5.
Hum Gene Ther ; 29(8): 845-852, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29373929

RESUMO

Patient derived T cells activated ex vivo with CD3/CD28 beads show superior expansion. Therefore, CD3/CD28 beads have huge potential to be used in the clinic for immunotherapy applications. Two protocols were devised to evaluate if the expression of third-generation human epidermal growth factor receptor 2 chimeric antigen receptor (CAR) can be improved on human T cells activated with CD3/CD28 beads. In protocol 1, unconcentrated human epidermal growth factor receptor 2 CAR retroviral supernatants were used, and in protocol 2, concentrated virus was used. The results demonstrate that compared to unconcentrated viral supernatants, transduction with the concentrated virus improved the infection rate of bead activated CD4 T cells from ∼40% to ∼70%, and the fluorescent intensity values improved from ∼12,000 to ∼28,000 mean fluorescence intensity units. These results demonstrate the utility of these protocols for CAR immunotherapies.


Assuntos
Imunoterapia Adotiva , Ativação Linfocitária/imunologia , Receptor ErbB-2/imunologia , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD28/imunologia , Complexo CD3/imunologia , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HEK293 , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapêutico , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/transplante
6.
Lab Invest ; 96(4): 481-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878133

RESUMO

Sarcomas are malignant heterogenous tumors of mesenchymal derivation. Emerging data suggest that miRNA might have a causal role in sarcomagenesis. Herein, we used a selective miRNA screening platform to study the comparative global miRNA expression signatures in a cohort of human sarcomas with the caveat that comparisons between tumor and non-tumor cells were performed from the same patients using formalin-fixed paraffin-embedded tissue. Five histologic types were examined that included: myxoid liposarcoma, well-differentiated liposarcoma, dedifferentiated liposarcoma, pleomorphic rhabdomyosarcoma, and synovial sarcoma. In addition, soft-tissue lipomas and normal fat were included as a separate set of controls for the lipogenic tumors. Clustering analysis showed a distinct global difference in expression patterns between the normal and sarcoma tissues. Expression signatures in an unsupervised hierarchical clustering analysis revealed tight clustering in synovial and myxoid liposarcomas, and the least clustering was observed in the pleomorphic rhabdomyosarcoma subtype. MiR-145 showed underexpression in pleomorphic rhabdomyosarcoma, well-differentiated liposarcoma, and synovial sarcoma. Unexpectedly, we found that a set of muscle-specific microRNAs (miRNAs; myomiRs): miR-133, miR-1, and miR-206 was significantly underexpressed in well-differentiated liposarcoma and synovial sarcoma, suggesting that they may function as tumor suppressors as described in muscle-relevant rhabdomyosarcomas. In addition, a tight linear progression of miRNA expression was identified from normal fat to dedifferentiated liposarcoma. These results suggest that miRNA expression profiles could elucidate classes of miRNAs that may elicit tumor-relevant activities in specific sarcoma subtypes.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Sarcoma/genética , Adulto , Idoso , Análise por Conglomerados , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Humanos , Lipossarcoma/diagnóstico , Lipossarcoma/genética , Lipossarcoma Mixoide/diagnóstico , Lipossarcoma Mixoide/genética , Masculino , MicroRNAs/classificação , Pessoa de Meia-Idade , Músculos/metabolismo , Especificidade de Órgãos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/genética , Sarcoma/diagnóstico , Sarcoma Sinovial/diagnóstico , Sarcoma Sinovial/genética , Adulto Jovem
7.
Cytokine ; 71(2): 339-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25516298

RESUMO

T cells reactive to tumor antigens and viral antigens lose their reactivity when exposed to the antigen-rich environment of a larger tumor bed or viral load. Such non-responsive T cells are termed exhausted. T cell exhaustion affects both CD8+ and CD4+ T cells. T cell exhaustion is attributed to the functional impairment of T cells to produce cytokines, of which the most important may be Interleukin 2 (IL2). IL2 performs functions critical for the elimination of cancer cells and virus infected cells. In one such function, IL2 promotes CD8+ T cell and natural killer (NK) cell cytolytic activities. Other functions include regulating naïve T cell differentiation into Th1 and Th2 subsets upon exposure to antigens. Thus, the signaling pathways contributing to T cell exhaustion could be linked to the signaling pathways contributing to IL2 loss. This review will discuss the process of T cell exhaustion and the signaling pathways that could be contributing to T cell exhaustion.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Regulação para Baixo , Interleucina-2/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose , Infecções Bacterianas/imunologia , Diferenciação Celular , Cromatina/metabolismo , Biologia Computacional , Epigênese Genética , Humanos , Imunoterapia , Células Matadoras Naturais/citologia , Doenças Parasitárias/imunologia , RNA Mensageiro/metabolismo , Transdução de Sinais
8.
Sci Signal ; 6(286): ra63, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23901138

RESUMO

In sarcoma, the activity of NF-κB (nuclear factor κB) reduces the abundance of the microRNA (miRNA) miR-29. The tumor suppressor A20 [also known as TNFAIP3 (tumor necrosis factor-α-induced protein 3)] inhibits an upstream activator of NF-κB and is often mutated in lymphomas. In a panel of human sarcoma cell lines, we found that the activation of NF-κB was increased and, although the abundance of A20 protein and mRNA was decreased, the gene encoding A20 was rarely mutated. The 3' untranslated region (UTR) of A20 mRNA has conserved binding sites for both of the miRNAs miR-29 and miR-125. Whereas the expression of miR-125 was increased in human sarcoma tissue, that of miR-29 was decreased in most samples. Overexpression of miR-125 decreased the abundance of A20 mRNA, whereas reconstituting miR-29 in sarcoma cell lines increased the abundance of A20 mRNA and protein. By interacting directly with the RNA binding protein HuR (human antigen R; also known as ELAVL1), miR-29 prevented HuR from binding to the A20 3'UTR and recruiting the RNA degradation complex RISC (RNA-induced silencing complex), suggesting that miR-29 can act as a decoy for HuR, thus protecting A20 transcripts. Decreased miR-29 and A20 abundance in sarcomas correlated with increased activity of NF-κB and decreased expression of genes associated with differentiation. Together, the findings reveal a unique role of miR-29 and suggest that its absence may contribute to sarcoma tumorigenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas ELAV/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , MicroRNAs/fisiologia , Proteínas Nucleares/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Biologia Computacional , Inativação Gênica , Genes Reporter , Humanos , Imunoprecipitação , Inflamação , Camundongos , Mutação , NF-kappa B/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de DNA , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
9.
Blood ; 110(9): 3301-9, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671234

RESUMO

CCAAT/enhancer-binding protein alpha (C/EBPalpha) is a critical regulator for early myeloid differentiation. Mutations in C/EBPalpha occur in 10% of patients with acute myeloid leukemia (AML), leading to the expression of a 30-kDa dominant-negative isoform (C/EBPalphap30). In the present study, using a global proteomics approach to identify the target proteins of C/EBPalphap30, we show that Ubc9, an E2-conjugating enzyme essential for sumoylation, is increased in its expression when C/EBPalphap30 is induced. We confirmed the increased expression of Ubc9 in patients with AML with C/EBPalphap30 mutations compared with other subtypes. We further confirmed that the increase of Ubc9 expression was mediated through increased transcription. Furthermore, we show that Ubc9-mediated enhanced sumoylation of C/EBPalphap42 decreases the transactivation capacity on a minimal C/EBPalpha promoter. Importantly, overexpression of C/EBPalphap30 in granulocyte colony-stimulating factor (G-CSF)-stimulated human CD34(+) cells leads to a differentiation block, which was overcome by the siRNA-mediated silencing of Ubc9. In summary, our data indicate that Ubc9 is an important C/EBPalphap30 target through which C/EBPalphap30 enhances the sumoylation of C/EBPalphap42 to inhibit granulocytic differentiation.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Leucemia Mieloide Aguda/genética , Proteínas Mutantes/fisiologia , Processamento de Proteína Pós-Traducional/genética , Proteína SUMO-1/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Regulação para Cima , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Inativação Gênica , Genes Dominantes/fisiologia , Granulócitos/citologia , Humanos , Células K562 , Lisina/metabolismo , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Estrogênio/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...