Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Plant Sci ; 11(6): e11554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106541

RESUMO

Premise: Rubiaceae is among the most species-rich plant families, as well as one of the most morphologically and geographically diverse. Currently available phylogenies have mostly relied on few genomic and plastid loci, as opposed to large-scale genomic data. Target enrichment provides the ability to generate sequence data for hundreds to thousands of phylogenetically informative, single-copy loci, which often leads to improved phylogenetic resolution at both shallow and deep taxonomic scales; however, a publicly accessible Rubiaceae-specific probe set that allows for comparable phylogenetic inference across clades is lacking. Methods: Here, we use publicly accessible genomic resources to identify putatively single-copy nuclear loci for target enrichment in two Rubiaceae groups: tribe Hillieae (Cinchonoideae) and tribal complex Palicoureeae+Psychotrieae (Rubioideae). We sequenced 2270 exonic regions corresponding to 1059 loci in our target clades and generated in silico target enrichment sequences for other Rubiaceae taxa using our designed probe set. To test the utility of our probe set for phylogenetic inference across Rubiaceae, we performed a coalescent-aware phylogenetic analysis using a subset of 27 Rubiaceae taxa from 10 different tribes and three subfamilies, and one outgroup in Apocynaceae. Results: We recovered an average of 75% and 84% of targeted exons and loci, respectively, per Rubiaceae sample. Probes designed using genomic resources from a particular subfamily were most efficient at targeting sequences from taxa in that subfamily. The number of paralogs recovered during assembly varied for each clade. Phylogenetic inference of Rubiaceae with our target regions resolves relationships at various scales. Relationships are largely consistent with previous studies of relationships in the family with high support (≥0.98 local posterior probability) at nearly all nodes and evidence of gene tree discordance. Discussion: Our probe set, which we call Rubiaceae2270x, was effective for targeting loci in species across and even outside of Rubiaceae. This probe set will facilitate phylogenomic studies in Rubiaceae and advance systematics and macroevolutionary studies in the family.

2.
Microorganisms ; 9(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946078

RESUMO

Most plants rely on specialized root-associated microbes to obtain essential nitrogen (N), yet not much is known about the evolutionary history of the rhizosphere-plant interaction. We conducted a common garden experiment to investigate the plant root-rhizosphere microbiome association using chloridoid grasses sampled from around the world and grown from seed in a greenhouse. We sought to test whether plants that are more closely related phylogenetically have more similar root bacterial microbiomes than plants that are more distantly related. Using metagenome sequencing, we found that there is a conserved core and a variable rhizosphere bacterial microbiome across the chloridoid grasses. Additionally, phylogenetic distance among the host plant species was correlated with bacterial community composition, suggesting the plant hosts prefer specific bacterial lineages. The functional potential for N utilization across microbiomes fluctuated extensively and mirrored variation in the microbial community composition across host plants. Variation in the bacterial potential for N fixation was strongly affected by the host plants' phylogeny, whereas variation in N recycling, nitrification, and denitrification was unaffected. This study highlights the evolutionary linkage between the N fixation traits of the microbial community and the plant host and suggests that not all functional traits are equally important for plant-microbe associations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...