Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Crop Sci ; 42(1): 51-57, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11756253

RESUMO

Endophytic fungi in pasture grasses produce alkaloids which affect invertebrate and vertebrate herbivores. While the competence to produce an alkaloid is a property of the fungus, the host plant may moderate fungal activity. Host genetic influence on endophyte activity was studied in perennial ryegrass (Lolium perenne L.) infected with a common strain of Neotyphodium lolii (Latch, Christensen & Samuels) Glenn, Bacon & Hanlin. Progeny seedling families of a partial diallel cross and their 12 parent clones were compared in a glasshouse experiment. Peramine and ergovaline concentrations were determined by high pressure liquid chromatography (HPLC), and intensity of endophyte infection was determined by enzyme-linked immunosorbent assay (ELISA). Concentrations of peramine and ergovaline and the amount of endophyte mycelium in plants varied between families, consistently across two glasshouse cells and (for the HPLC data) two harvests. There was no indication of any maternal effects. Host genetic control was evident in significant general combining ability effects and smaller specific combining ability effects. Parent-progeny correlation coefficients were high, and narrow-sense heritability was estimated as 0.70, 0.72, and 0.58 respectively for ergovaline, peramine, and ELISA. Further analysis indicated little interaction between loci, and no directional dominance. The three traits were correlated, indicating that 41 and 65% of the genetically controlled variation in ergovaline and peramine concentrations, respectively, was a function of mycelial mass. However, there were departures from these relationships. Host plant selection may enable development of pastures with controlled low levels of toxic but ecologically beneficial endophyte metabolites.

2.
Appl Environ Microbiol ; 64(2): 601-6, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9464398

RESUMO

Grazing of Echinopogon spp. by livestock in Australia has caused symptoms similar to those of perennial ryegrass staggers. We observed an endophytic fungus in the intercellular spaces of the leaves and seeds of New Zealand and Australian specimens of Echinopogon ovatus. Culture of surface-sterilized seeds from New Zealand specimens yielded a slow-growing fungus. An examination in which immunoblotting and an enzyme-linked immunosorbent assay (ELISA) were used indicated that E. ovatus plants from Australia and New Zealand were infected with fungi serologically related to Neotyphodium lolii (the endophyte of perennial ryegrass) and other Epichloe and Neotyphodium spp. endophytic in pooid grasses. No lolitrems (the indole-diterpenoids implicated as the causative agents of perennial ryegrass staggers), peramine analogs, or ergot alkaloids were detected in the infected specimens by high-performance liquid chromatography or ELISA. However, in endophyte-infected E. ovatus plants from New Zealand, analogs of the indole-diterpenoid paxilline (thought to be a biosynthetic precursor of the lolitrems and related tremorgens) were detected by ELISA, and N-formylloline was detected by gas chromatography. Endophyte-free specimens of New Zealand E. ovatus did not contain detectable paxilline analogs or lolines and were more palatable than infected specimens to adults of the pasture pest Listronotus bonariensis (Argentine stem weevil). Hyphae similar to those of the E. ovatus endophyte were also found in herbarium specimens of Echinopogon nutans var. major, Echinopogon intermedius, Echinopogon caespitosus, and Echinopogon cheeli. This appears to be the first time that an endophytic Neotyphodium species has been identified in grasses endemic to New Zealand or Australia.


Assuntos
Acremonium/isolamento & purificação , Poaceae/microbiologia , Acremonium/metabolismo , Acremonium/patogenicidade , Animais , Austrália , Bovinos , Nova Zelândia
3.
Appl Environ Microbiol ; 61(4): 1527-33, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16535001

RESUMO

Perennial ryegrass (Lolium perenne L.) is commonly infected with the endophytic fungus Acremonium lolii in a mutualistic relationship. The fungus produces a number of alkaloids, some of which are responsible for causing livestock disorders and/or for conferring insect resistance to the host grass. Little is known about the interrelationship between fungal growth and alkaloid production in the ryegrass plant and how this varies throughout the year. The concentrations of A. lolii and two of its alkaloid metabolites, lolitrem B and peramine, were monitored in basal (mainly leaf sheath) and upper (mainly leaf blade) parts of 17 endophyte-infected ryegrass plants on a monthly basis for 1 year. A. lolii, lolitrem B, and peramine concentrations were lowest in winter. The highest A. lolii concentrations were recorded in early summer, which coincided with the development of plant reproductive structures. Lolitrem B concentrations were highest from summer to early autumn and were consistently highest in the basal part of the plant. Peramine concentrations were generally highest in the upper part of the plant. Individual plants contained different levels of A. lolii, lolitrem B and peramine. These differences were generally maintained throughout the year. Although data for each month were variable, regression analyses showed that yearly mean concentrations of lolitrem B and peramine in individual plants were closely related to, and therefore probably largely determined by, yearly mean concentrations of A. lolii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...