Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 203(20): e0037221, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34309398

RESUMO

Macromolecular cell-envelope-spanning structures such as the bacterial flagellum must traverse the cell wall. Lytic transglycosylase enzymes are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. In the periplasmic space, the assembly of the flagellar rod requires the scaffold protein FlgJ, which includes a muramidase domain in the canonical models Salmonella enterica and Escherichia coli. In contrast, in Rhodobacter sphaeroides, FlgJ and the dedicated flagellar lytic transglycosylase SltF are separate entities that interact in the periplasm. In this study, we show that sltF is expressed, along with the genes encoding the early components of the flagellar hierarchy that include the hook-basal body proteins, making SltF available during the rod assembly. Protein-protein interaction experiments demonstrated that SltF interacts with the rod proteins FliE, FlgB, FlgC, FlgF, and FlgG through its C-terminal region. A deletion analysis that divides the C terminus in two halves revealed that the interacting regions for most of the rod proteins are not redundant. Our results also show that the presence of the rod proteins FliE, FlgB, FlgC, and FlgF displace the previously reported SltF-FlgJ interaction. In addition, we observed modulation of the transglycosylase activity of SltF mediated by FlgB and FlgJ that could be relevant to coordinate rod assembly with cell wall remodeling. In summary, different mechanisms regulate the flagellar lytic transglycosylase, SltF, ensuring a timely transcription, a proper localization and a controlled enzymatic activity. IMPORTANCE Several mechanisms participate in the assembly of cell-envelope-spanning macromolecular structures. The sequential expression of substrates to be exported, selective export, and a specific order of incorporation are some of the mechanisms that stand out to drive an efficient assembly process. Here, we analyze how the structural rod proteins, the scaffold protein FlgJ and the flagellar lytic enzyme SltF, interact in an orderly fashion to assemble the flagellar rod into the periplasmic space. A complex arrangement of transient interactions directs a dedicated flagellar muramidase toward the flagellar rod. All of these interactions bring this protein to the proximity of the peptidoglycan wall while also modulating its enzymatic activity. This study suggests how a dynamic network of interactions participates in controlling SltF, a prominent component for flagellar formation.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/genética , Flagelos/genética , Rhodobacter sphaeroides/genética
2.
J Bacteriol ; 200(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30061356

RESUMO

In this work, we have characterized the soluble lytic transglycosylase (SltF) from Rhodobacter sphaeroides that interacts with the scaffolding protein FlgJ in the periplasm to open space at the cell wall peptidoglycan heteropolymer for the emerging rod. The characterization of the genetic context of flgJ and sltF in alphaproteobacteria shows that these two separate genes coexist frequently in a flagellar gene cluster. Two domains of unknown function in SltF were studied, and the results show that the deletion of a 17-amino-acid segment near the N terminus does not show a recognizable phenotype, whereas the deletion of 47 and 95 amino acids of the C terminus of SltF disrupts the interaction with FlgJ without affecting the transglycosylase catalytic activity of SltF. These mutant proteins are unable to support swimming, indicating that the physical interaction between SltF and FlgJ is central for flagellar formation. In a maximum likelihood tree of representative lytic transglycosylases, all of the flagellar SltF proteins cluster in subfamily 1F. From this analysis, it was also revealed that the lytic transglycosylases related to the type III secretion systems present in pathogens cluster with the closely related flagellar transglycosylases.IMPORTANCE Flagellar biogenesis is a highly orchestrated event where the flagellar structure spans the bacterial cell envelope. The rod diameter of approximately 4 nm is larger than the estimated pore size of the peptidoglycan layer; hence, its insertion requires the localized and controlled lysis of the cell wall. We found that a 47-residue domain of the C terminus of the lytic transglycosylase (LT) SltF of R. sphaeroides is involved in the recognition of the rod chaperone FlgJ. We also found that in many alphaproteobacteria, the flagellar cluster includes a homolog of SltF and FlgJ, indicating that association of an LT with the flagellar machinery is ancestral. A maximum likelihood tree shows that family 1 of LTs segregates into seven subfamilies.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/enzimologia , Glicosiltransferases/metabolismo , Filogenia , Rhodobacter sphaeroides/enzimologia , Proteínas de Bactérias/genética , Flagelos/genética , Glicosiltransferases/genética , Funções Verossimilhança , Mutação , Peptidoglicano/metabolismo , Rhodobacter sphaeroides/genética , Deleção de Sequência , Sistemas de Secreção Tipo III/genética
3.
J Bacteriol ; 194(17): 4513-20, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22707709

RESUMO

Macromolecular structures such as the bacterial flagellum in Gram-negative bacteria must traverse the cell wall. Lytic transglycosylases are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. We have previously shown that in Rhodobacter sphaeroides SltF, the flagellar muramidase, and FlgJ, a flagellar scaffold protein, are separate entities that interact in the periplasm. In this study we show that the export of SltF to the periplasm is dependent on the SecA pathway. A deletion analysis of the C-terminal portion of SltF shows that this region is required for SltF-SltF interaction. These C terminus-truncated mutants lose the capacity to interact with themselves and also bind FlgJ with higher affinity than does the wild-type protein. We propose that this region modulates the interaction with the scaffold protein FlgJ during the assembly process.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Muramidase/química , Muramidase/metabolismo , Rhodobacter sphaeroides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Parede Celular/metabolismo , Dados de Sequência Molecular , Peptidoglicano Glicosiltransferase/metabolismo , Canais de Translocação SEC , Proteínas SecA , Alinhamento de Sequência , Deleção de Sequência
4.
J Bacteriol ; 193(23): 6781-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21949068

RESUMO

Rhodobacter sphaeroides is able to assemble two different flagella, the subpolar flagellum (Fla1) and the polar flagella (Fla2). In this work, we report the swimming behavior of R. sphaeroides Fla2(+) cells lacking each of the proteins encoded by chemotactic operon 1. A model proposing how these proteins control Fla2 rotation is presented.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica , Óperon , Rhodobacter sphaeroides/fisiologia , Proteínas de Bactérias/genética , Flagelos/genética , Rhodobacter sphaeroides/genética
5.
Antonie Van Leeuwenhoek ; 95(1): 77-90, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19003427

RESUMO

The single subpolar flagellum of Rhodobacter sphaeroides shows an enlarged hook-filament junction. One of the two proteins that compose this section of the filament is HAP1(Rs) (FlgK(Rs)) it contains a central non-conserved region of 860 amino acids that makes this protein about three times larger than its homologue in Salmonella enterica serovar Typhimurium. We investigated the role of this central portion of the unusually large HAP1 protein of R. sphaeroides by monitoring the effects of serial deletions in flgK (Rs) , the gene encoding HAP1(Rs), on swimming and swarming. Two deletion mutants did not assemble functional flagella, two were paralyzed and five exhibited reduced free-swimming speeds. Some mutants produced unusual swarming patterns on soft agar without or with Ficoll 400. A segment of approximately 200-aa of the central region of HAP1(Rs) that aligns with the variable region of the flagellin sequence from other gamma- and beta-proteobacteria was also found. Therefore, it is possible that the origin of this large central domain of HAP1(Rs) could be associated with an event of horizontal transfer and subsequent duplications and/or insertions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/genética , Sequência Conservada , Flagelos/química , Flagelos/genética , Flagelos/metabolismo , Estrutura Terciária de Proteína , Rhodobacter sphaeroides/genética , Deleção de Sequência
6.
J Bacteriol ; 189(22): 7998-8004, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17873041

RESUMO

We have characterized open reading frame RSP0072, which is located within the flgG operon in Rhodobacter sphaeroides. The amino acid sequence analysis of this gene product showed the presence of a soluble lytic transglycosylase domain. The deletion of the N-terminal region (90 amino acids) of the product of RSP0072 yields a leaky nonmotile phenotype, as determined by swarm assays in soft agar. Electron micrographs revealed the lack of flagella in mutant cells. The purified wild-type protein showed lytic activity on extracts of Micrococcus luteus. In contrast, no lytic activity was observed when the residues E57 or E83 were replaced by alanine. Affinity blotting suggests that the protein encoded by RSP0072 interacts with the flagellar rod-scaffolding protein FlgJ, which lacks the muramidase domain present in FlgJ of many bacteria. We propose that the product of RSP0072 is a flagellar muramidase that is exported to the periplasm via the Sec pathway, where it interacts with FlgJ to open a gap in the peptidoglycan layer for the subsequent penetration of the nascent flagellar structure.


Assuntos
Flagelos/enzimologia , Muramidase/metabolismo , Rhodobacter sphaeroides/enzimologia , Regulação Bacteriana da Expressão Gênica , Muramidase/química , Muramidase/genética , Mutação , Fases de Leitura Aberta , Óperon , Fotossíntese/fisiologia , Ligação Proteica
7.
J Bacteriol ; 189(22): 8397-401, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17890312

RESUMO

Rhodobacter sphaeroides expresses two different flagellar systems, a subpolar flagellum (fla1) and multiple polar flagella (fla2). These structures are encoded by different sets of flagellar genes. The chemotactic control of the subpolar flagellum (fla1) is mediated by three of the six different CheY proteins (CheY6, CheY4, or CheY3). We show evidence that CheY1, CheY2, and CheY5 control the chemotactic behavior mediated by fla2 flagella and that RSP6099 encodes the fla2 FliM protein.


Assuntos
Proteínas de Bactérias/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Quimiotaxia , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Movimento , Mutação
8.
J Bacteriol ; 186(15): 5172-7, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15262956

RESUMO

The six copies of the response regulator CheY from Rhodobacter sphaeroides bind to the switch protein FliM. Phosphorylation by acetyl phosphate (AcP) was detected by tryptophan fluorescence quenching in three of the four CheYs that contain this residue. Autophosphorylation with Ac(32)P was observed in five CheY proteins. We also show that all of the cheY genes are expressed simultaneously; therefore, in vivo all of the CheY proteins could bind to FliM to control the chemotactic response. Consequently, we hypothesize that in this complex chemotactic system, the binding of some CheY proteins to FliM, does not necessarily imply switching of the flagellar motor.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Rhodobacter sphaeroides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Quimiotáticas Aceptoras de Metil , Dados de Sequência Molecular , Fosforilação , Rhodobacter sphaeroides/crescimento & desenvolvimento
9.
Biochim Biophys Acta ; 1579(1): 55-63, 2002 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-12401220

RESUMO

In this work, we show evidence regarding the functionality of a large cluster of flagellar genes in Rhodobacter sphaeroides. The genes of this cluster, flgGHIJKL and orf-1, are mainly involved in the formation of the basal body, and flgK and flgL encode the hook-associated proteins HAP1 and HAP3. In general, these genes showed a good similarity as compared with those reported for Salmonella enterica. However, flgJ and flgK showed particular features that make them unique among the flagellar sequences already reported. flgJ is only a third of the size reported for flgJ from Salmonella; whereas flgK is about three times larger than any other flgK sequence previously known. Our results indicate that both genes are functional, and their products are essential for flagellar assembly. In contrast, the interruption of orf-1, did not affect motility suggesting that this sequence, if functional, is not indispensable for flagellar assembly. Finally, we present genetic evidence suggesting that the flgGHIJKL genes are expressed as a single transcriptional unit depending on the sigma-54 factor.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Flagelos/fisiologia , Rhodobacter sphaeroides/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/fisiologia , Clonagem Molecular , Flagelos/química , Flagelina/biossíntese , Flagelina/química , Dados de Sequência Molecular , Mutação , Óperon , Plasmídeos , Rhodobacter sphaeroides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...