Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(16): 4008-4020, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38616779

RESUMO

In this study, the surface tension and the structure of hydrated reline are investigated by using diverse methods. Initially, the surface tension displays a nonlinear pattern as water content increases, decreasing until reaching 45 wt %, then gradually matching that of pure water. This fluctuation is associated with strong electrostatic correlations present in pure reline, which decrease as more water is added. Changes in surface tension reflect a shift from charge layering in pure reline to an increased interfacial hydrogen bonding as the water content rises. This shift causes the segregation of urea molecules into the bulk phase and a gradual anchoring of water molecules to the air-reline interface. An interesting observation is the antisurfactant effect, where heightened interfacial anchoring results in an unexpected increase in real contribution of surface tension. This, along with weakened electrostatic correlations beyond 45 wt % due to reinforced interfacial hydrogen bonding, contributes to the complex behavior of surface tension observed in this study.

2.
J Phys Chem B ; 127(15): 3543-3555, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37018548

RESUMO

We report molecular simulations of the interaction between poly(ethylene terephthalate) (PET) surfaces and water molecules with a short-term goal to better evaluate the different energy contributions governing the enzymatic degradation of amorphous PET. After checking that the glass transition temperature, density, entanglement mass, and mechanical properties of an amorphous PET are well reproduced by our molecular model, we extend the study to the extraction of a monomer from the bulk surface in different environments, i.e., water, vacuum, dodecane, and ethylene glycol. We complete this energetic characterization by the calculation of the work of adhesion of PET surfaces with water and dodecane molecules and by the determination of the contact angle of water droplets. These calculations are compared with experiments and should help us to better understand the enzymatic degradation of PET from both the thermodynamic and molecular viewpoints.

3.
J Chem Theory Comput ; 10(6): 2471-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580767

RESUMO

We report a transferable force field to describe the interactions of alkanolamines based on the N-C-C-O backbone with water, derived from a comparison with experimental excess enthalpies. This force field is tested on 2-aminoethan-1-ol (MEA), 2-amino-2-methylpropan-1-ol, 2-aminobutan-1-ol (ABU), and 1-aminopropan-2-ol. These alkanolamines are derivatives of MEA obtained by substitution with methyl and ethyl groups on the carbon atoms of the N-C-C-O backbone. A specific cross interaction site corresponding to the hydrogen bond between the hydroxyl group of the alkanolamine and the oxygen atom of water was introduced in order to reproduce quantitatively experimental excess enthalpies. The transferability of this specific site was assessed by predictions on alkanolamines that were not included in the parametrization data set. New data on enthalpy of mixing for ABU with water are reported, since they were not available in the literature. From the molecular simulations, several microscopic quantities of the alkanolamine-water mixtures were analyzed in order to improve our understanding of these systems. The structure of the solvation shells at varying compositions, statistics of hydrogen bonds, conformations, and energy decompositions served as bases for an interpretation of the molecular reasons underlying the behavior of the excess enthalpy. The prominent result is that water-water interactions play a major role in differentiating alkanolamine-water mixtures, which is a manifestation of the hydrophobic effect. Both the structural and energetic effects observed at the molecular level point to phenomena that have strong composition dependence, in particular, the interplay between the intramolecular hydrogen bond in the alkanolamine and the intermolecular hydrogen bonds with water.

4.
Chemphyschem ; 13(17): 3866-74, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23047473

RESUMO

A classical force field is proposed for the molecular simulation of primary alkanolamines containing a NH(2)-C-C-OH backbone. A method is devised to take into account the polar (H-bonding) environment of the alkanolamines by calculating electrostatic charges in the presence of explicit solvent molecules. The force field does not use a universal set of charges, but is rather constructed by following a general method for obtaining specific charges for the different alkanolamines. The model is parameterized on the two simplest primary alkanolamines and then validated by calculating thermodynamic properties of five other molecules. Experimental liquid densities and enthalpies of vaporization are also reported in order to complete existing literature data. The predicted ability of the force field is evaluated by comparing the simulation results with experimental densities and enthalpies of vaporization. Densities are predicted with an uncertainty of 1.5 % and enthalpies of vaporization with an uncertainty of 1 kJ mol(-1). A decomposition of the interaction energy into electrostatic and repulsive-dispersive interactions and an analysis of hydrogen-bond statistics lead to a complex picture. Some terms of these interactions are related to the molecular structure in a clear way, others are not. The results provide insights into the structure-property relations that contribute to a better description of the thermodynamic properties of alkanolamines.

5.
J Phys Chem B ; 111(1): 181-90, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201442

RESUMO

The densities and heat capacities of solutions of phosphoric acid, 0.05 to 1 mol kg-1, were measured using flow vibrating tube densitometry and differential Picker-type calorimetry at temperatures up to 623 K and at pressures up to 28 MPa. The standard molar volumes and heat capacities of molecular H3PO4(aq) were obtained, via the apparent molar properties corrected for partial dissociation, by extrapolation to infinite dilution. The data on standard derivative properties were correlated simultaneously with the dissociation constants of phosphoric acid from the literature using the theoretically founded SOCW model. This made it possible to describe the standard thermodynamic properties, particularly the standard chemical potential, of both molecular and ionized phosphoric acid at temperatures up to at least 623 K and at pressures up to 200 MPa. This representation allows one to easily calculate the first-degree dissociation constant of H3PO4(aq). The performance of the SOCW model was compared with the other approaches for calculating the high-temperature dissociation constant of the phosphoric acid. Using the standard derivative properties, sensitively reflecting the interactions between the solute and the solvent, the high-temperature behavior of H3PO4(aq) is compared with that of other weak acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...