Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Environ Sci Pollut Res Int ; 31(25): 37428-37443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38777976

RESUMO

The use of bio-nanotechnology in agriculture-such as the biological applications of metal oxide nanoparticles (NPs)-greatly improves crop yield and quality under different abiotic stress factors including soil metal contamination. Here, we explore the effectiveness of zinc oxide (ZnO)-NPs (0, 50 mg/L) foliar spraying to ameliorate the detrimental effects of cadmium (Cd) on the water transport and nitrogen metabolism in tomato (Solanum lycopersicum Mill. cv. Chibli F1) plants grown on a Cd-supplied (CdCl2; 0, 10, 40 µM) Hoagland nutrient solution. The results depicted that the individually studied factors (ZnO-NPs and Cd) had a significant impact on all the physiological parameters analyzed. Independently to the Cd concentration, ZnO-NPs-sprayed plants showed significantly higher dry weight (DW) in both leaves and roots compared to the non-sprayed ones, which was in consonance with higher and lower levels of Zn2+ and Cd2+ ions, respectively, in these organs. Interestingly, ZnO-NPs spraying improved water status in all Cd-treated plants as evidenced by the increase in root hydraulic conductance (L0), apoplastic water pathway percentage, and leaf and root relative water content (RWC), compared to the non-sprayed plants. This improved water balance was associated with a significant accumulation of osmoprotectant osmolytes, such as proline and soluble sugars in the plant organs, reducing electrolyte leakage (EL), and osmotic potential (ψπ). Also, ZnO-NPs spraying significantly improved NO3- and NH4+ assimilation in the leaf and root tissues of all Cd-treated plants, leading to a reduction in NH4+ toxicity. Our findings point out new insights into how ZnO-NPs affect water transport and nitrogen metabolism in Cd-stressed plants and support their use to improve crop resilience against Cd-contaminated soils.


Assuntos
Cádmio , Nitrogênio , Plântula , Solanum lycopersicum , Óxido de Zinco , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Plântula/efeitos dos fármacos , Água , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Nanopartículas , Nanopartículas Metálicas/toxicidade
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902208

RESUMO

Red LED light (R LED) is an efficient tool to improve seed germination and plant growth under controlled environments since it is more readily absorbed by photoreceptors' phytochromes compared to other wavelengths of the spectrum. In this work, the effect of R LED on the radicle emergence and growth (Phase III of germination) of pepper seeds was evaluated. Thus, the impact of R LED on water transport through different intrinsic membrane proteins, via aquaporin (AQP) isoforms, was determined. In addition, the remobilization of distinct metabolites such as amino acids, sugars, organic acids, and hormones was analysed. R LED induced a higher germination speed index, regulated by an increased water uptake. PIP2;3 and PIP2;5 aquaporin isoforms were highly expressed and could contribute to a faster and more effective hydration of embryo tissues, leading to a reduction of the germination time. By contrast, TIP1;7, TIP1;8, TIP3;1 and TIP3;2 gene expressions were reduced in R LED-treated seeds, pointing to a lower need for protein remobilization. NIP4;5 and XIP1;1 were also involved in radicle growth but their role needs to be elucidated. In addition, R LED induced changes in amino acids and organic acids as well as sugars. Therefore, an advanced metabolome oriented to a higher energetic metabolism was observed, conditioning better seed germination performance together with a rapid water flux.


Assuntos
Aquaporinas , Capsicum , Capsicum/metabolismo , Sementes/metabolismo , Germinação , Isoformas de Proteínas/metabolismo , Aquaporinas/metabolismo , Hormônios/metabolismo , Homeostase , Água/metabolismo , Açúcares/metabolismo , Aminoácidos/metabolismo
4.
Front Plant Sci ; 13: 983976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061763

RESUMO

One of the greatest threats to wild strawberries (Fragaria vesca Mara des Bois) after harvest is the highly perishability at ambient temperature. Breeders have successfully met the quality demands of consumers, but the prevention of waste after harvest in fleshy fruits is still pending. Most of the waste is due to the accelerated progress of senescence-like process after harvest linked to a rapid loss of water and firmness at ambient temperature. The storage life of strawberries increases at low temperature, but their quality is limited by the loss of cell structure. The application of high CO2 concentrations increased firmness during cold storage. However, the key genes related to resistance to softening and cell wall disassembly following transference from cold storage at 20°C remain unclear. Therefore, we performed RNA-seq analysis, constructing a weighted gene co-expression network analysis (WGCNA) to identify which molecular determinants play a role in cell wall integrity, using strawberries with contrasting storage conditions, CO2-cold stored (CCS), air-cold stored (ACS), non-cold stored (NCS) kept at ambient temperature, and intact fruit at harvest (AH). The hub genes associated with the cell wall structural architecture of firmer CO2-treated strawberries revealed xyloglucans stabilization attributed mainly to a down-regulation of Csl E1, XTH 15, Exp-like B1 and the maintenance of expression levels of nucleotide sugars transferases such as GMP and FUT as well as improved lamella integrity linked to a down-regulation of RG-lyase, PL-like and PME. The preservation of cell wall elasticity together with the up-regulation of LEA, EXPA4, and MATE, required to maintain cell turgor, is the mechanisms controlled by high CO2. In stressed air-cold stored strawberries, in addition to an acute softening, there is a preferential transcript accumulation of genes involved in lignin and raffinose pathways. Non-cold stored strawberries kept at 20°C after harvest are characterized by an enrichment in genes mainly involved in oxidative stress and up-expression of genes involved in jasmonate biosynthesis. The present results on transcriptomic analysis of CO2-treated strawberries with enhanced resistance to softening and oxidative stress at consumption will help to improve breeding strategies of both wild and cultivated strawberries.

5.
J Sci Food Agric ; 102(15): 7353-7362, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35804482

RESUMO

BACKGROUND: Soil fertility is a major concern during vegetable production. Conventional versus organic fertilization has been studied in order to conserve soil properties. While some reports point out an increase in food nutritional properties, the loss of crop yield under organic conditions continues to be a problem. Thus, an experiment with broccoli in the field was carried out, comparing crop management under conventional fertilization (CF) and two soil amendment treatments: manure pellet (M) and an enriched-biochar (EB) supplemented by an organic fertilizer (AND) applied alone (M + CF; EB+AND) or in combination (M + EB + AND). Crop yield and the nutritional properties in the flowering heads (mineral content, phenolic compounds and glucosinolates (GSLs)), were determined. RESULTS: Enriched-biochar and manure as a standalone amendment resulted in higher crop yield regarding CF, but not when they were applied in combination. The number of flowering heads with no-commercial characteristics was lower after enriched-biochar soil application. Finally, enriched-biochar treatment enhanced NO3 - , PO4 3- and SO4 2- levels in the flowering heads, and some of the ion contents can be associated with mineral changes in the soil after the biochar amendment. Also, the contents of phenolic compounds and indole GSLs were higher after enriched-biochar application compared with the other treatments, GSL increase being due to the higher percentage of sulfur in the plant rather that an adequate N/S ratio. CONCLUSION: Application of enriched-biochar amendment in the cultivation of broccoli is appropriate, since there are no losses of yield and an increase in nutritional compounds in the flowering heads. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brassica , Esterco , Carvão Vegetal/química , Fertilizantes/análise , Solo/química , Agricultura/métodos , Minerais , Compostos Fitoquímicos , Nitrogênio/análise
6.
Plants (Basel) ; 10(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685923

RESUMO

Medicago truncatula is a forage crop of choice for farmers, and it is a model species for molecular research. The growth and development and subsequent yields are limited by water availability mainly in arid and semi-arid regions. Our study aims to evaluate the morpho-physiological, biochemical and molecular responses to water deficit stress in four lines (TN6.18, JA17, TN1.11 and A10) of M. truncatula. The results showed that the treatment factor explained the majority of the variation for the measured traits. It appeared that the line A10 was the most sensitive and therefore adversely affected by water deficit stress, which reduced its growth and yield parameters, whereas the tolerant line TN6.18 exhibited the highest root biomass production, a significantly higher increase in its total protein and soluble sugar contents, and lower levels of lipid peroxidation with greater cell membrane integrity. The expression analysis of the DREB1B gene using RT-qPCR revealed a tissue-differential expression in the four lines under osmotic stress, with a higher induction rate in roots of TN6.18 and JA17 than in A10 roots, suggesting a key role for DREB1B in water deficit tolerance in M. truncatula.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34360302

RESUMO

No studies have evaluated the influence of pharmaceutical copayment on hospital admission rates using time series analysis. Therefore, we aimed to analyze the relationship between hospital admission rates and the influence of the introduction of a pharmaceutical copayment system (PCS). In July 2012, a PCS was implemented in Spain, and we designed a time series analysis (1978-2018) to assess its impact on emergency hospital admissions. Hospital admission rates were estimated between 1978 and 2018 each month using the Hospital Morbidity Survey in Spain (the number of urgent hospital admissions per 100,000 inhabitants). This was conducted for men, women and both and for all-cause, cardiovascular and respiratory hospital discharges. Life expectancy was obtained from the National Institute of Statistics. The copayment variable took a value of 0 before its implementation (pre-PCS: January 1978-June 2012) and 1 after that (post-PCS: July 2012-December 2018). ARIMA (Autoregressive Integrated Moving Average) (2,0,0)(1,0,0) models were estimated with two predictors (life expectancy and copayment implementation). Pharmaceutical copayment did not influence hospital admission rates (with p-values between 0.448 and 0.925) and there was even a reduction in the rates for most of the analyses performed. In conclusion, the PCS did not influence hospital admission rates. More studies are needed to design health policies that strike a balance between the amount contributed by the taxpayer and hospital admission rates.


Assuntos
Hospitalização , Preparações Farmacêuticas , Feminino , Hospitais , Humanos , Masculino , Espanha
8.
Ecotoxicol Environ Saf ; 220: 112402, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34090105

RESUMO

High levels of soil salinity can cause substantial decline in growth and productivity of crops worldwide, thus representing a major threat to global agriculture. In recent years, engineered nanoparticles (NPs) have been deemed as a promising alternative in combating abiotic stress factors, such as salinity. In this context, the present study was designed to explore the potential of cerium oxide nanoparticles (CeO2NPs) in alleviating salt stress in grapevine (Vitis vinifera L. cv. Flame Seedless) cuttings. Specifically, the interaction between CeO2 NPs (25, 50 and 100 mg L-1) and salinity (25 and 75 mM NaCl) was evaluated by assaying an array of agronomic, physiological, analytical and biochemical parameters. Treatments with CeO2 NPs, in general, alleviated the adverse impacts of salt stress (75 mM NaCl) significantly improving relevant agronomic traits of grapevine. CeO2 NPs significantly ameliorated chlorophyll damage under high levels of salinity. Furthermore, the presence of CeO2 NPs attenuated salinity-induced damages in grapevine as indicated by lower levels of proline, MDA and EL; however, H2O2 content was not ameliorated by the presence of CeO2 NPs under salt stress. Additionally, salinity caused substantial increases in enzymatic activities of GP, APX and SOD, compared with control plants. Similar to stress conditions, all concentrations of CeO2 NPs triggered APX activity, while the highest concentration of CeO2 NPs significantly increased GP activity. However, CeO2 NPs did not significantly modify SOD activity. Considering mineral nutrient profile, salinity increased Na and Cl content as well as Na/K ratio, while it decreased K, P and Ca contents. Nevertheless, the presence of CeO2 NPs did not lead to significant alterations in Na, K and P content of salt-stressed plants. Taken together, current findings suggest that CeO2 NPs could be employed as promising salt-stress alleviating agents in grapevine.


Assuntos
Cério/farmacologia , Nanopartículas , Estresse Salino/efeitos dos fármacos , Vitis/efeitos dos fármacos , Antioxidantes/metabolismo , Cério/química , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Nanopartículas/química , Prolina/metabolismo , Salinidade , Solo/química , Vitis/metabolismo
10.
Plants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924007

RESUMO

We used an integrated morpho-physiological, biochemical, and genetic approach to investigate the salt responses of four lines (TN1.11, TN6.18, JA17, and A10) of Medicago truncatula. Results showed that TN1.11 exhibited a high tolerance to salinity, compared with the other lines, recording a salinity induced an increase in soluble sugars and soluble proteins, a slight decrease in malondialdehyde (MDA) accumulation, and less reduction in plant biomass. TN6.18 was the most susceptible to salinity as it showed less plant weight, had elevated levels of MDA, and lower levels of soluble sugars and soluble proteins under salt stress. As transcription factors of the APETALA2/ethylene responsive factor (AP2/ERF) family play important roles in plant growth, development, and responses to biotic and abiotic stresses, we performed a functional characterization of MtERF1 gene. Real-time PCR analysis revealed that MtERF1 is mainly expressed in roots and is inducible by NaCl and low temperature. Additionally, under salt stress, a greater increase in the expression of MtERF1 was found in TN1.11 plants than that in TN6.18. Therefore, the MtERF1 pattern of expression may provide a useful marker for discriminating among lines of M. truncatula and can be used as a tool in breeding programs aiming at obtaining Medicago lines with improved salt tolerance.

11.
Plants (Basel) ; 10(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562119

RESUMO

Within the myrtle (Myrtus communis L.) species, different genotypes may produce dark-blue berries or white berries depending on the peel color upon ripening. One dark-blue cultivar and one white myrtle cultivar were used to study the molecular mechanisms underlying flavonoid biosynthesis. The relative expression levels of common (PAL, CHS, CHI, DFR and LDOX) and specific (FLS, ANR, LAR and UFGT) flavonoid genes were analyzed during fruit development by means of quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the anthocyanin content was determined, and it showed an increase with the ripening of the berries of the dark-blue cultivar. The results showed an increased transcript abundance of PAL, CHI, DFR, LDOX and UFGT gene expression in the dark-blue cultivar compared to the white one, as well as a strong positive correlation between the changes in gene expression and anthocyanin accumulation. The transcript levels of UFGT showed sharp increases at 150 and 180 days after full blooming (DAF) in the dark-blue cultivar, which corresponded with anthocyanin accumulation. However, ripening seemed to modulate the expression of genes implicated in flavonols (i.e., FLS) and flavan-3-ols (i.e., LAR and ANR) in different manners. However, whereas FLS transcript accumulation increased at the end of the ripening period in the dark-blue cultivar, LAR and ANR gene expression decreased in both cultivars.

12.
Foods ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429921

RESUMO

Halophyte plants are adapted to saline environments and represent a novel type of crops given their possible uses at both culinary and industrial levels. In this work, the nutritional quality of different Mediterranean halophyte species, Atriplex halimus, Salicornia fruticosa, and Cakile maritima, was evaluated under conditions of high salinity. For this, plants were grown at different NaCl concentrations (0, 100, 200, and 300 mM) and the contents of proteins, total lipids, polyphenols, and mineral elements were analyzed as well as growth. Of the three species, C. maritima was the most sensitive to salt stress and therefore showed the highest phenolic compounds content. By contrast, whereas salinity increased the amounts of proteins and phenolics with respect to the control in A. halimus and S. fruticosa, it decreased them in C. maritima. Plants of A. halimus accumulated higher amounts of Na+ in their leaves, but the level of this ion, considering human consumption, was below that of other culinary halophyte species. In conclusion, all the results indicate that these three halophyte species grown at high salt levels represent optimal crops for-new foodstuff-production as green salt or spice due to their nutritional potential.

13.
Plant Physiol Biochem ; 158: 146-157, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310482

RESUMO

Dehydrins, a family of hydrophilic and intrinsically disordered proteins, are a subgroup of late embryogenesis abundant proteins that perform different protective roles in plants. Although the transition from a disordered to an ordered state has been associated with dehydrin function or interactions with specific partner molecules, the question of how the primary and secondary dehydrin protein structure is related to specific functions or target molecule preferences remains unresolved. This work addresses the in silico sequencing analysis and in vitro functional characterization of two dehydrin isoforms, VviDHN2 and VviDHN4, from Vitis vinifera. Conformational changes suggest potential interactions with a broad range of molecules and could point to more than one function. The in silico analysis showed differences in conserved segments, specific amino acid binding sequences, heterogeneity of structural properties and predicted sites accessible for various post-translational modifications between the sequence of both dehydrins. Moreover, in vitro functional analysis revealed that although they both showed slight antifungal activity, only VviDHN4 acts as a molecular shield that protects proteins from freezing and dehydration. VviDHN4 also demonstrated high potential as a chaperone and reactive oxygen species scavenger, in addition to presenting antifreeze activity, all of which confirms its multifunctional nature. Our findings highlight the significant role of Y-segments and the differential and specific amino acid composition of less conserved segments that are rich in polar/charged residues between S- and K-segments, coupled with post-translational modifications, in modulating and switching dehydrin biological function.


Assuntos
Proteínas de Plantas/metabolismo , Vitis , Sequência de Aminoácidos , Simulação por Computador , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Vitis/genética , Vitis/metabolismo
14.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297419

RESUMO

Table grape is a fruit with increasing interest due to its attributes and nutritional compounds. During recent years, new cultivars such as those without seeds and with new flavors have reached countries around the world. For this reason, postharvest treatments that retain fruit quality need to be improved. However, little is known to date about the biochemical and molecular mechanisms related with observed quality improvements. This review aims to examine existing literature on the different mechanisms. Special attention will be placed on molecular mechanisms which activate and regulate the different postharvest treatments applied in order to improve table grape quality.


Assuntos
Armazenamento de Alimentos/métodos , Frutas/normas , Vitis/metabolismo , Conservantes de Alimentos/farmacologia , Vitis/efeitos dos fármacos , Vitis/microbiologia
15.
Atherosclerosis ; 314: 48-57, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160246

RESUMO

BACKGROUND AND AIMS: The aim of this study was to ascertain the association between the consumption of different categories of edible olive oils (virgin olive oils and olive oil) and olive pomace oil and ankle-brachial pressure index (ABI) in participants in the PREDIMED-Plus study, a trial of lifestyle modification for weight and cardiovascular event reduction in individuals with overweight/obesity harboring the metabolic syndrome. METHODS: We performed a cross-sectional analysis of the PREDIMED-Plus trial. Consumption of any category of olive oil and olive pomace oil was assessed through a validated food-frequency questionnaire. Multivariable linear regression models were fitted to assess associations between olive oil consumption and ABI. Additionally, ABI ≤1 was considered as the outcome in logistic models with different categories of olive oil and olive pomace oil as exposure. RESULTS: Among 4330 participants, the highest quintile of total olive oil consumption (sum of all categories of olive oil and olive pomace oil) was associated with higher mean values of ABI (beta coefficient: 0.014, 95% confidence interval [CI]: 0.002, 0.027) (p for trend = 0.010). Logistic models comparing the consumption of different categories of olive oils, olive pomace oil and ABI ≤1 values revealed an inverse association between virgin olive oils consumption and the likelihood of a low ABI (odds ratio [OR] 0.73, 95% CI [0.56, 0.97]), while consumption of olive pomace oil was positively associated with a low ABI (OR 1.22 95% CI [1.00, 1.48]). CONCLUSIONS: In a Mediterranean population at high cardiovascular risk, total olive oil consumption was associated with a higher mean ABI. These results suggest that olive oil consumption may be beneficial for peripheral artery disease prevention, but longitudinal studies are needed.


Assuntos
Doenças Cardiovasculares , Tornozelo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Estudos Transversais , Fatores de Risco de Doenças Cardíacas , Humanos , Azeite de Oliva , Óleos de Plantas , Fatores de Risco
16.
Int J Mol Sci ; 21(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080920

RESUMO

Detergent-resistant membranes (DRMs) microdomains, or "raft lipids", are key components of the plasma membrane (PM), being involved in membrane trafficking, signal transduction, cell wall metabolism or endocytosis. Proteins imbibed in these domains play important roles in these cellular functions, but there are few studies concerning DRMs under abiotic stress. In this work, we determine DRMs from the PM of broccoli roots, the lipid and protein content, the vesicles structure, their water osmotic permeability and a proteomic characterization focused mainly in aquaporin isoforms under salinity (80 mM NaCl). Based on biochemical lipid composition, higher fatty acid saturation and enriched sterol content under stress resulted in membranes, which decreased osmotic water permeability with regard to other PM vesicles, but this permeability was maintained under control and saline conditions; this maintenance may be related to a lower amount of total PIP1 and PIP2. Selective aquaporin isoforms related to the stress response such as PIP1;2 and PIP2;7 were found in DRMs and this protein partitioning may act as a mechanism to regulate aquaporins involved in the response to salt stress. Other proteins related to protein synthesis, metabolism and energy were identified in DRMs independently of the treatment, indicating their preference to organize in DMRs.


Assuntos
Aquaporinas/fisiologia , Brassica/metabolismo , Microdomínios da Membrana/metabolismo , Estresse Salino , Brassica/fisiologia , Membrana Celular/metabolismo , Microdomínios da Membrana/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Proteômica
17.
Orphanet J Rare Dis ; 15(1): 207, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32791987

RESUMO

BACKGROUND: Mutations in CRYAA, which encodes the α-crystallin protein, are associated with a spectrum of congenital cataract-microcornea syndromes. RESULTS: In this study, we performed clinical examination and subsequent genetic analysis in two unrelated sporadic cases of different geographical origins presenting with a complex phenotype of ocular malformation. Both cases manifested bilateral microphthalmia and severe anterior segment dysgenesis, primarily characterized by congenital aphakia, microcornea, and iris hypoplasia/aniridia. NGS-based analysis revealed two novel single nucleotide variants occurring de novo and affecting the translation termination codon of the CRYAA gene, c.520T > C and c.521A > C. Both variants are predicted to elongate the C-terminal protein domain by one-third of the original length. CONCLUSIONS: Our report not only expands the mutational spectrum of CRYAA but also identifies the genetic cause of the unusual ocular phenotype described in this report.


Assuntos
Catarata , Cristalinas , Anormalidades do Olho , Cristalinas/genética , Anormalidades do Olho/genética , Humanos , Mutação/genética , Nucleotídeos , Linhagem , Fenótipo
18.
J Adv Res ; 23: 101-111, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32089878

RESUMO

During the last few years, membrane vesicles (as exovesicles) have emerged as potential nanocarriers for therapeutic applications. They are receiving attention due to their proteo-lipid nature, size, biocompatibility and biodegradability. In this work, we investigated the potential use of isolated root plasma membrane vesicles from broccoli plants as nanocarriers. For that, the entrapment efficiency and integrity of the vesicles were determined. Also, the delivery of keratinocytes and penetrability through skin were studied. The results show that the broccoli vesicles had high stability, in relation to their proteins, and high entrapment efficiency. Also, the interaction between the vesicles and keratinocytes was proven by the delivery of an encapsulated fluorescent product into cells and by the detection of plant proteins in the keratinocyte plasma membrane, showing the interactions between the membranes of two species of distinct biological kingdoms. Therefore, these results, together with the capacity of brassica vesicles to cross the skin layers, detected by fluorescent penetration, enable us to propose a type of nanocarrier obtained from natural plant membranes for use in transdermal delivery.

19.
J Sci Food Agric ; 99(15): 6859-6867, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31385314

RESUMO

BACKGROUND: In this study, we analyzed the effect of the application of high levels of CO2 (20 kPa CO2 + 20 kPa O2 + 60 kPa N2 ) for 3 days at low temperature on a white table-grape cultivar (Superior Seedless) in comparison with a black one (cv. Autumn Royal) in terms of quality parameters. We also used a solid-state voltammetry methodology to analyze the effect of the 3-day gaseous treatment in berry tissues from both cultivars in the first stage of storage. We determined the role of the non-enzymatic (total phenols, total anthocyanins, and antioxidant activity) and the enzymatic antioxidant (catalase (GCAT), ascorbate peroxidase (VcAPX) gene expression) systems in the behaviors of both cultivars. RESULTS: Our results indicate that the application of a 3-day gaseous treatment was effective in maintaining the quality of black and white table grapes for up to 28 days of storage at 0 °C. The electrochemical methodology applied was useful for differentiating between skin and pulp samples, and between black and white table grape cultivars. Some molecular mechanisms were modulated in the skin of both cultivars to overcome oxidative stress, which was not manifested with the same intensity in grapes treated with CO2 for 3 days. However, some differences were observed in relation to the non-enzymatic system. CONCLUSION: The 3-day gaseous treatment was useful to maintain black and white table grape quality at 0 °C. The voltammetry analysis indicated that CO2 -treated samples from the skin and pulp showed more similarity to freshly harvested ones. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Dióxido de Carbono/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Vitis/efeitos dos fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Dióxido de Carbono/química , Catalase/genética , Catalase/metabolismo , Cor , Conservantes de Alimentos/química , Armazenamento de Alimentos , Frutas/química , Frutas/efeitos dos fármacos , Gases/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/química , Vitis/enzimologia , Vitis/genética
20.
Plant Physiol Biochem ; 132: 145-155, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30189418

RESUMO

Soil salinity is one of the main factors affecting plant growth. Dissection of plant response to salinity into physiological traits may result a simple approximation than the overall response that may influence many aspects of the plant. In the present study two factors were considered to evaluate the correlation of different physiological variables in the plant response to salinity. The first factor was the species, with four levels (Atriplex halimus, Salicornia fruticosa, Cakile maritima, and Brassica rapa), and the second was the salinity (0, 100, 200, and 300 mM NaCl). Thus, the interrelationships of distinct physiological traits - leaf succulence, minerals (micronutrients and macronutrients), plant water relations (osmotic potential, water potential, and hydraulic conductivity), protein content, catalase, and unsaturated fatty acids - were analyzed by Discriminant Canonical Analysis (DCA). Additional information supplied by the interaction between the variables provided a multivariate response pattern in which the two factors (species x salinity) influenced the relationship between responses rather than affecting a single response. Such analysis allows to establish whether the selected trait was associated to each other for helping to define the best set of parameters in relation to the response of new genotypes to salinity. Thus, plant growth was influenced by leaf succulence adaptation to salt stress whereas it was not determined by water relations. The Na ion prevailed over K as the element with the highest variability in the response to salinity in A. halimus and S. fruticosa, whereas in C. maritima and B. rapa, Ca, S, and P stood out more. Patterns of ion accumulation together with the protein and unsaturated fatty acid ratios could be used in discriminating plant response to salt stress may be positioned in interrelated groups. The results highlight new evidences in the response to salt stress associated to a specific interrelationship of a set of physiological parameters.


Assuntos
Amaranthaceae/fisiologia , Brassicaceae/fisiologia , Chenopodiaceae/fisiologia , Característica Quantitativa Herdável , Salinidade , Estresse Fisiológico , Amaranthaceae/crescimento & desenvolvimento , Análise de Variância , Biomassa , Brassicaceae/crescimento & desenvolvimento , Catalase/metabolismo , Chenopodiaceae/crescimento & desenvolvimento , Análise Discriminante , Ácidos Graxos/metabolismo , Minerais/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...