Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Cycle ; 11(22): 4152-66, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23047606

RESUMO

Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary ovarian cancers. Here, we used a co-culture approach to study the metabolic effects of BRCA1-null ovarian cancer cells on adjacent tumor-associated stromal fibroblasts. Our results directly show that BRCA1-null ovarian cancer cells produce large amounts of hydrogen peroxide, which can be abolished either by administration of simple antioxidants (N-acetyl-cysteine; NAC) or by replacement of the BRCA1 gene. Thus, the BRCA1 gene normally suppresses tumor growth by functioning as an antioxidant. Importantly, hydrogen peroxide produced by BRCA1-null ovarian cancer cells induces oxidative stress and catabolic processes in adjacent stromal fibroblasts, such as autophagy, mitophagy and glycolysis, via stromal NFκB activation. Catabolism in stromal fibroblasts was also accompanied by the upregulation of MCT4 and a loss of Cav-1 expression, which are established markers of a lethal tumor microenvironment. In summary, loss of the BRCA1 tumor suppressor gene induces hydrogen peroxide production, which then leads to metabolic reprogramming of the tumor stroma, driving stromal-epithelial metabolic coupling. Our results suggest that new cancer prevention trials with antioxidants are clearly warranted in patients that harbor hereditary/familial BRCA1 mutations.


Assuntos
Proteína BRCA1/metabolismo , Peróxido de Hidrogênio/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Mutação , NF-kappa B/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo
2.
Cell Cycle ; 10(23): 4065-73, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22129993

RESUMO

Increasing chronological age is the most significant risk factor for cancer. Recently, we proposed a new paradigm for understanding the role of the aging and the tumor microenvironment in cancer onset. In this model, cancer cells induce oxidative stress in adjacent stromal fibroblasts. This, in turn, causes several changes in the phenotype of the fibroblast including mitochondrial dysfunction, hydrogen peroxide production, and aerobic glycolysis, resulting in high levels of L-lactate production. L-lactate is then transferred from these glycolytic fibroblasts to adjacent epithelial cancer cells and used as "fuel" for oxidative mitochondrial metabolism.  Here, we created a new pre-clinical model system to directly test this hypothesis experimentally. To synthetically generate glycolytic fibroblasts, we genetically-induced mitochondrial dysfunction by knocking down TFAM using an sh-RNA approach.  TFAM is mitochondrial transcription factor A, which is important in functionally maintaining the mitochondrial respiratory chain. Interestingly, TFAM-deficient fibroblasts showed evidence of mitochondrial dysfunction and oxidative stress, with the loss of certain mitochondrial respiratory chain components, and the over-production of hydrogen peroxide and L-lactate. Thus, TFAM-deficient fibroblasts underwent metabolic reprogramming towards aerobic glycolysis.  Most importantly, TFAM-deficient fibroblasts significantly promoted tumor growth, as assayed using a human breast cancer (MDA-MB-231) xenograft model. These increases in glycolytic fibroblast driven tumor growth were independent of tumor angiogenesis. Mechanistically, TFAM-deficient fibroblasts increased the mitochondrial activity of adjacent epithelial cancer cells in a co-culture system, as seen using MitoTracker. Finally, TFAM-deficient fibroblasts also showed a loss of caveolin-1 (Cav-1), a known breast cancer stromal biomarker. Loss of stromal fibroblast Cav-1 is associated with early tumor recurrence, metastasis, and treatment failure, resulting in poor clinical outcome in breast cancer patients. Thus, this new experimental model system, employing glycolytic fibroblasts, may be highly clinically relevant. These studies also have implications for understanding the role of hydrogen peroxide production in oxidative damage and "host cell aging," in providing a permissive metabolic microenvironment for promoting and sustaining tumor growth.


Assuntos
Neoplasias da Mama/patologia , Senescência Celular , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Animais , Neoplasias da Mama/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Glicólise , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Nus , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Biol Ther ; 11(4): 383-94, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21150282

RESUMO

We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome.


Assuntos
Caveolina 1/farmacologia , Fibroblastos/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Recombinantes/farmacologia , Superóxido Dismutase/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/enzimologia , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Proteômica , RNA Interferente Pequeno , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Drug Metab Dispos ; 38(12): 2204-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20810538

RESUMO

UDP-glucuronosyltransferases (UGTs) are enzymes involved in the metabolism of steroid hormones, carcinogens, cancer chemotherapy agents, and addictive agents from cigarettes. Because the UGT2B family of genes has been linked to hormonal regulation in human cell lines in vitro, we hypothesized that there may be sex-related differences in the expression and activity of these genes in human tissues. To evaluate whether there are sex differences in UGT2B expression and activity, we examined 103 normal human liver specimens for UGT2B expression by real-time polymerase chain reaction and in vitro glucuronidation activities in human liver microsomes (HLM). Men exhibited an approximately 4-fold higher level of expression of UGT2B17 than women (p = 0.007). Consistent with the increased expression of UGT2B17 in men, HLM from men also had a higher level of glucuronidation activity than HLM from women against three UGT2B17 substrates: 3-fold higher for 17-dihydroexemestane (p = 0.002); 3-fold higher for 3-hydroxycotinine (p < 0.001); and 1.5-fold higher for suberoylanilide hydroxamic acid (p = 0.014). When we stratified by UGT2B17 gene deletion genotype, similar patterns were observed for all three substrates, with HLM from men with the UGT2B17 (+/+) or (+/0) genotypes exhibiting significantly higher levels of glucuronidation activity against all three substrates compared with HLM from women. These data suggest that men have a higher amount of UGT2B17 glucuronidation activity then women. This sex difference in UGT2B17 gene expression and corresponding protein activity could potentially result in different levels of carcinogen detoxification or drug elimination in men versus women.


Assuntos
Glucuronosiltransferase/genética , Caracteres Sexuais , Feminino , Regulação Enzimológica da Expressão Gênica , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Masculino , Microssomos Hepáticos/enzimologia , Antígenos de Histocompatibilidade Menor , RNA Mensageiro/análise
5.
Cell Cycle ; 9(16): 3256-76, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20814239

RESUMO

Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a "lethal tumor micro-environment." Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a "metabolic" and "mutagenic" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the "Reverse Warburg Effect"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use "oxidative stress" in adjacent fibroblasts (i) as an "engine" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the "field effect" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively "contagious"--spread from cell-to-cell like a virus--creating an "oncogenic/mutagenic" field promoting widespread DNA damage.


Assuntos
Neoplasias da Mama/metabolismo , Caveolina 1/metabolismo , Fibroblastos/metabolismo , Instabilidade Genômica , Estresse Oxidativo , Autofagia , Evolução Biológica , Neoplasias da Mama/genética , Caveolina 1/genética , Linhagem Celular , Técnicas de Cocultura , Dano ao DNA , Regulação para Baixo , Feminino , Histonas/metabolismo , Humanos , Ácido Láctico/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Cancer Res ; 69(7): 2981-9, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19318555

RESUMO

Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase inhibitor used in the treatment of cutaneous T-cell lymphoma and in clinical trials for treatment of multiple other cancers. A major mode of SAHA metabolism is by glucuronidation via the UDP-glucuronosyltransferase (UGT) family of enzymes. To characterize the UGTs active against SAHA, homogenates from HEK293 cell lines overexpressing UGT wild-type or variant UGT were used. The hepatic UGTs 2B17 and 1A9 and the extrahepatic UGTs 1A8 and 1A10 exhibited the highest overall activity against SAHA as determined by V(max)/K(M) (16+/-6.5, 7.1+/-2.2, 33+/-6.3, and 24+/-2.4 nL x min(-1) x microg UGT protein(-1), respectively), with UGT2B17 exhibiting the lowest K(M) (300 micromol/L) against SAHA of any UGT in vitro. Whereas the UGT1A8p.Ala173Gly variant exhibited a 3-fold (P<0.005) decrease in glucuronidation activity against SAHA compared with wild-type UGT1A8, the UGT1A8p.Cys277Tyr variant exhibited no detectable glucuronidation activity; a similar lack of detectable glucuronidation activity was observed for the UGT1A10p.Gly139Lys variant. To analyze the effects of the UGT2B17 gene deletion variant (UGT2B17*2) on SAHA glucuronidation phenotype, human liver microsomes (HLM) were analyzed for glucuronidation activity against SAHA and compared with UGT2B17 genotype. HLM from subjects homozygous for UGT2B17*2 exhibited a 45% (P<0.01) decrease in glucuronidation activity and a 75% (P<0.002) increase in K(M) compared with HLMs from subjects homozygous for the wild-type UGT2B17*1 allele. Overall, these results suggest that several UGTs play an important role in the metabolism of SAHA and that UGT2B17-null individuals could potentially exhibit altered SAHA clearance rates with differences in overall response.


Assuntos
Glucuronosiltransferase/metabolismo , Ácidos Hidroxâmicos/farmacocinética , Linhagem Celular , Inibidores Enzimáticos/farmacocinética , Glucuronosiltransferase/genética , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fenótipo , Polimorfismo Genético , Vorinostat
7.
Drug Metab Dispos ; 35(11): 2006-14, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17664247

RESUMO

Tamoxifen (TAM) is an antiestrogen that has been widely used in the treatment and prevention of breast cancer in women. One of the major mechanisms of metabolism and elimination of TAM and its major active metabolites 4-hydroxytamoxifen (4-OH-TAM) and 4-OH-N-desmethyl-TAM (endoxifen; 4-hydroxy-N-desmethyl-tamoxifen) is via glucuronidation. Although limited studies have been performed characterizing the glucuronidation of 4-OH-TAM, no studies have been performed on endoxifen. In the present study, characterization of the glucuronidating activities of human UDP glucuronosyltransferases (UGTs) against isomers of 4-OH-TAM and endoxifen was performed. Using homogenates of individual UGT-overexpressing cell lines, UGTs 2B7 approximately 1A8 > UGT1A10 exhibited the highest overall O-glucuronidating activity against trans-4-OH-TAM as determined by Vmax/K(M), with the hepatic enzyme UGT2B7 exhibiting the highest binding affinity and lowest K(M) (3.7 microM). As determined by Vmax/K(M), UGT1A10 exhibited the highest overall O-glucuronidating activity against cis-4-OH-TAM, 10-fold higher than the next-most active UGTs 1A1 and 2B7, but with UGT1A7 exhibiting the lowest K(M). Although both N- and O-glucuronidation occurred for 4-OH-TAM in human liver microsomes, only O-glucuronidating activity was observed for endoxifen; no endoxifen-N-glucuronidation was observed for any UGT tested. UGTs 1A10 approximately 1A8 > UGT2B7 exhibited the highest overall glucuronidating activities as determined by Vmax/K(M) for trans-endoxifen, with the extrahepatic enzyme UGT1A10 exhibiting the highest binding affinity and lowest K(M) (39.9 microM). Similar to that observed for cis-4-OH-TAM, UGT1A10 also exhibited the highest activity for cis-endoxifen. These data suggest that several UGTs, including UGTs 1A10, 2B7, and 1A8 play an important role in the metabolism of 4-OH-TAM and endoxifen.


Assuntos
Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Tamoxifeno/metabolismo , Catálise , Linhagem Celular , Glucuronosiltransferase/genética , Glicosilação , Humanos , Cinética , Espectrometria de Massas , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacocinética , Estereoisomerismo , Tamoxifeno/análogos & derivados , Tamoxifeno/síntese química , Tamoxifeno/química , Tamoxifeno/farmacocinética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...