Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Math Biol ; 62(1): 81-109, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20162418

RESUMO

A graphical technique is given for determining the outcome of two species competition for two resources. This method is unifying in the sense that the graphical criterion leading to the various outcomes of competition are consistent across most of the spectrum of resource types (from those that fulfill the same growth needs to those that fulfill different needs) regardless of the classification method used, and the resulting graphs bear a striking resemblance to the well-known phase portraits for two species Lotka-Volterra competition. Our graphical method complements that of Tilman. Both include zero net growth isoclines. However, instead of using the consumption vectors at potential coexistence equilibria to determine input resource concentrations leading to specific competitive outcomes, we introduce curves bounding the feasible set (the set where the resource concentrations of any equilibrium solution must be located). The washout equilibrium (corresponding to the supply point) occurs at an intersection of curves defining the feasible set boundary. The resource concentrations of all other equilibria are found where zero net growth isoclines either intersect each other inside the feasible set or they intersect the feasible set boundary. A species has positive biomass at such an equilibrium only if its zero net growth isocline is involved in such an intersection. The competitive outcomes are then determined from the position of the single species equilibria, just as in the phase portrait analysis for classical competition (rather than from information at potential coexistence equilibria as in Tilman's method).


Assuntos
Biomassa , Ecossistema , Modelos Logísticos , Modelos Biológicos , Reatores Biológicos
2.
J Math Biol ; 51(4): 458-90, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16012799

RESUMO

We study a model of the chemostat with two species competing for two perfectly substitutable resources in the case of linear functional response. Lyapunov methods are used to provide sufficient conditions for the global asymptotic stability of the coexistence equilibrium. Then, using compound matrix techniques, we provide a global analysis in a subset of parameter space. In particular, we show that each solution converges to an equilibrium, even in the case that the coexistence equilibrium is a saddle. Finally, we provide a bifurcation analysis based on the dilution rate. In this context, we are able to provide a geometric interpretation that gives insight into the role of the other parameters in the bifurcation sequence.


Assuntos
Ecossistema , Modelos Biológicos , Modelos Lineares , Matemática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...