Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 29(21): 5843-57, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19737917

RESUMO

Osteoblasts and chondrocytes arise from common osteo-chondroprogenitor cells. We show here that inactivation of ERK1 and ERK2 in osteo-chondroprogenitor cells causes a block in osteoblast differentiation and leads to ectopic chondrogenic differentiation in the bone-forming region in the perichondrium. Furthermore, increased mitogen-activated protein kinase signaling in mesenchymal cells enhances osteoblast differentiation and inhibits chondrocyte differentiation. These observations indicate that extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in the lineage specification of mesenchymal cells. The inactivation of ERK1 and ERK2 resulted in reduced beta-catenin expression, suggesting a role for canonical Wnt signaling in ERK1 and ERK2 regulation of skeletal lineage specification. Furthermore, inactivation of ERK1 and ERK2 significantly reduced RANKL expression, accounting for a delay in osteoclast formation. Thus, our results indicate that ERK1 and ERK2 not only play essential roles in the lineage specification of osteo-chondroprogenitor cells but also support osteoclast formation in vivo.


Assuntos
Diferenciação Celular , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoclastos/enzimologia , Osteogênese , Animais , Pareamento de Bases/genética , Osso e Ossos/anormalidades , Osso e Ossos/enzimologia , Condrócitos/citologia , Condrócitos/enzimologia , Condrogênese , Coristoma/complicações , Coristoma/enzimologia , Ativação Enzimática , Lâmina de Crescimento/citologia , Lâmina de Crescimento/enzimologia , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/complicações , Deformidades Congênitas dos Membros/enzimologia , MAP Quinase Quinase 1/metabolismo , Mesoderma/citologia , Mesoderma/enzimologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/deficiência , Proteína Quinase 3 Ativada por Mitógeno/deficiência , Mutação/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/enzimologia , Osteoclastos/citologia , Regiões Promotoras Genéticas/genética , Ligante RANK/metabolismo
2.
Hum Mol Genet ; 18(2): 227-40, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18923003

RESUMO

Activating mutations in FGFR3 cause achondroplasia and thanatophoric dysplasia, the most common human skeletal dysplasias. In these disorders, spinal canal and foramen magnum stenosis can cause serious neurologic complications. Here, we provide evidence that FGFR3 and MAPK signaling in chondrocytes promote synchondrosis closure and fusion of ossification centers. We observed premature synchondrosis closure in the spine and cranial base in human cases of homozygous achondroplasia and thanatophoric dysplasia as well as in mouse models of achondroplasia. In both species, premature synchondrosis closure was associated with increased bone formation. Chondrocyte-specific activation of Fgfr3 in mice induced premature synchondrosis closure and enhanced osteoblast differentiation around synchondroses. FGF signaling in chondrocytes increases Bmp ligand mRNA expression and decreases Bmp antagonist mRNA expression in a MAPK-dependent manner, suggesting a role for Bmp signaling in the increased bone formation. The enhanced bone formation would accelerate the fusion of ossification centers and limit the endochondral bone growth. Spinal canal and foramen magnum stenosis in heterozygous achondroplasia patients, therefore, may occur through premature synchondrosis closure. If this is the case, then any growth-promoting treatment for these complications of achondroplasia must precede the timing of the synchondrosis closure.


Assuntos
Acondroplasia/metabolismo , Desenvolvimento Ósseo , Sistema de Sinalização das MAP Quinases , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Displasia Tanatofórica/metabolismo , Acondroplasia/genética , Acondroplasia/fisiopatologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Displasia Tanatofórica/genética , Displasia Tanatofórica/fisiopatologia
3.
Proc Natl Acad Sci U S A ; 102(41): 14665-70, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16203988

RESUMO

The transcription factor Sox9 is expressed in all chondroprogenitors and has an essential role in chondrogenesis. Sox9 is also expressed in other tissues, including central nervous system, neural crest, intestine, pancreas, testis, and endocardial cushions, and plays a crucial role in cell proliferation and differentiation in several of these tissues. To determine the cell fate of Sox9-expressing cells during mouse embryogenesis, we generated mice in which a Cre recombinase gene preceded by an internal ribosome entry site was inserted into the 3' untranslated region of the Sox9 gene (Sox9-Cre knock-in). In the developing skeleton, Sox9 was expressed before Runx2, an early osteoblast marker gene. Cell fate mapping by using Sox9-Cre;ROSA26 reporter (R26R) mice revealed that Sox9-expressing limb bud mesenchymal cells gave rise to both chondrocytes and osteoblasts. Furthermore, a mutant in which the Osterix gene was inactivated in Sox9-expressing cells exhibited a lack of endochondral and intramembranous ossification and a lack of mature osteoblasts comparable with Osterix-null mutants. In addition, Sox9-expressing limb bud mesenchymal cells also contributed to tendon and synovium formation. By using Sox9-Cre;R26R mice, we also were able to systematically follow Sox9-expressing cells from embryonic day 8.0 to 17.0. Our results showed that Sox9-expressing cells contributed to the formation of all cell types of the spinal cord, epithelium of the intestine, pancreas, and mesenchyme of the testis. Thus, our results strongly suggest that all osteo-chondroprogenitor cells, as well as progenitors in a variety of tissues, are derived from Sox9-expressing precursors during mouse embryogenesis.


Assuntos
Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Osteoblastos/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Condrócitos/citologia , Primers do DNA , Proteínas de Grupo de Alta Mobilidade/genética , Imuno-Histoquímica , Integrases/genética , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Reação em Cadeia da Polimerase , Proteínas/genética , Proteínas/metabolismo , RNA não Traduzido , Fatores de Transcrição SOX9 , Fator de Transcrição Sp7 , Células-Tronco/citologia , Fatores de Transcrição/genética
4.
Genes Dev ; 18(3): 290-305, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14871928

RESUMO

We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1.


Assuntos
Acondroplasia/genética , Condrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Quinases , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transativadores/metabolismo , Animais , Diferenciação Celular , MAP Quinase Quinase 1 , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Osteogênese , Fenótipo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/deficiência , Fator de Transcrição STAT1 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...