Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 48: 109223, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383736

RESUMO

Species distribution data are key for monitoring present and future biodiversity patterns and informing conservation and management strategies. Large biodiversity information facilities often contain spatial and taxonomic errors that reduce the quality of the provided data. Moreover, datasets are frequently shared in varying formats, inhibiting proper integration and interoperability. Here, we provide a quality-controlled dataset of the diversity and distribution of cold-water corals, which provide key ecosystem services and are considered vulnerable to human activities and climate change effects. We use the common term cold-water corals to refer to species of the orders Alcyonacea, Antipatharia, Pennatulacea, Scleractinia, Zoantharia of the subphylum Anthozoa, and order Anthoathecata of the class Hydrozoa. Distribution records were collated from multiple sources, standardized using the Darwin Core Standard, dereplicated, taxonomically corrected and flagged for potential vertical and geographic distribution errors based on peer-reviewed published literature and expert consulting. This resulted in 817,559 quality-controlled records of 1,170 accepted species of cold-water corals, openly available under the FAIR principle of Findability, Accessibility, Interoperability and Reusability of data. The dataset represents the most updated baseline for the global cold-water coral diversity, and it can be used by the broad scientific community to provide insights into biodiversity patterns and their drivers, identify regions of high biodiversity and endemicity, and project potential redistribution under future climate change. It can also be used by managers and stakeholders to guide biodiversity conservation and prioritization actions against biodiversity loss.

2.
Front Cardiovasc Med ; 8: 719031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485416

RESUMO

Heart failure, which is responsible for a high number of deaths worldwide, can develop due to chronic hypertension. Heart failure can involve and progress through several different pathways, including: fibrosis, inflammation, and angiogenesis. Early and specific detection of changes in the myocardium during the transition to heart failure can be made via the use of molecular imaging techniques, including positron emission tomography (PET). Traditional cardiovascular PET techniques, such as myocardial perfusion imaging and sympathetic innervation imaging, have been established at the clinical level but are often lacking in pathway and target specificity that is important for assessment of heart failure. Therefore, there is a need to identify new PET imaging markers of inflammation, fibrosis and angiogenesis that could aid diagnosis, staging and treatment of hypertensive heart failure. This review will provide an overview of key mechanisms underlying hypertensive heart failure and will present the latest developments in PET probes for detection of cardiovascular inflammation, fibrosis and angiogenesis. Currently, selective PET probes for detection of angiogenesis remain elusive but promising PET probes for specific targeting of inflammation and fibrosis are rapidly progressing into clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...