Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-31239861

RESUMO

Despite the availability of anticancer drugs, breast cancer remains the most death-causing tumor-related disease in women. Hence, there is a need for discovery and development of efficient alternative drugs, and sources such as plants need to be explored. In this study, antioxidant capacities and inhibitory effects against MCF7 cells of the extracts of stem bark of three Nigerian medicinal plants (Detarium microcarpum, Guiera senegalensis, and Cassia siamea) were investigated. The D. microcarpum extracts had the highest antioxidant and antiproliferative effects, followed by that of G. senegalensis, and the C. siamea extracts had minimal effects. The IC50 values of the methanol and aqueous extracts from the three plants that inhibited the proliferation of MCF7 cells ranged from 78-> 500 µg/ml. Moreover, all the plant extracts but the aqueous extract of Cassia siamea exhibited antimetastatic action and induced apoptosis and cell cycle arrest in MCF7 cells. Liquid chromatography/time-of-flight/mass spectrometry profiling revealed that the five potent extracts contain many phenols and omega-6 fatty acids, and some of the identified compounds (isorhamnetin, eupatorin, alpinumisoflavone, procyanidin B3, syringin, and gallic acid) have been reported to have antiproliferative effects on cancer cells. Hence, the stem bark of these plants could be potential sources of antibreast cancer agents.

3.
Metab Brain Dis ; 33(5): 1431-1441, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29797116

RESUMO

Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.


Assuntos
Invertebrados , Neurociências/educação , Pesquisa , África , Animais , Modelos Animais
4.
Science ; 359(6380): 1111, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29590034
5.
Neuroscience ; 374: 323-325, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29427653

RESUMO

Neuroscience research and training in many African countries are difficult due to funding and infrastructure deficit. This has resulted in few neuroscientists within Africa. However, invertebrates such as Drosophila and Caenorhabditis elegans could provide the perfect answer to these difficulties. These organisms are cheap, easy to handle and offer a comparable advantage over vertebrates in neuroscience research modeling because they have a simple nervous system and exhibit well-defined behaviors. Studies using invertebrates have helped to understand neurosciences and the complexes associated with it. If Africa wants to catch up with the rest of the world in neuroscience research, it needs to employ this innovative cost-effective approach in its research. To improve invertebrate neuroscience within the Africa continent, the authors advocated the establishment of invertebrate research centers either at regional or national level across Africa. Finally, there is also a need to provide public funding to consolidate the gains that have been made by not-for-profit international organizations over the years.


Assuntos
Pesquisa Biomédica/métodos , Invertebrados , Modelos Animais , Neurociências/métodos , África , Animais , Pesquisa Biomédica/economia , Neurociências/economia
6.
Metab Brain Dis ; 33(2): 359-368, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28993966

RESUMO

The science of the brain and nervous system cuts across almost all aspects of human life and is one of the fastest growing scientific fields worldwide. This necessitates the demand for pragmatic investment by all nations to ensure improved education and quality of research in Neurosciences. Although obvious efforts are being made in advancing the field in developed societies, there is limited data addressing the state of neuroscience in sub-Saharan Africa. Here, we review the state of neuroscience development in Nigeria, Africa's most populous country and its largest economy, critically evaluating the history, the current situation and future projections. This review specifically addresses trends in clinical and basic neuroscience research and education. We conclude by highlighting potentially helpful strategies that will catalyse development in neuroscience education and research in Nigeria, among which are an increase in research funding, provision of tools and equipment for training and research, and upgrading of the infrastructure at hand.


Assuntos
Previsões , Neurociências/tendências , Pesquisa/tendências , Animais , Humanos , Nigéria , Projetos de Pesquisa
7.
Malays J Med Sci ; 23(5): 17-28, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27904421

RESUMO

BACKGROUND: Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. METHODS: Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. RESULTS: Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. CONCLUSIONS: The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

8.
J Basic Clin Physiol Pharmacol ; 27(2): 101-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26565548

RESUMO

BACKGROUND: Phenytoin and amitriptyline are often reported to attenuate pain in chronic conditions. Information on their ability to ameliorate cognitive impairment associated with neuropathic pain remains unclear due to mixed results from studies. This study investigated the effects of phenytoin and amitriptyline on memory deficit associated with neuropathic pain. METHODS: Twenty-eight adult male Wistar rats were randomly divided into four groups: A, B, C, and D (n=7). Groups A, B, C, and D served as sham control, sciatic nerve ligated untreated, sciatic nerve ligated receiving amitriptyline (5 mg/kg), and sciatic nerve ligated receiving phenytoin (10 mg/kg) respectively. Treatments lasted for 14 days, after which both 'Y' maze and novel object recognition test (NOR) were performed. On the last day of treatment, the animals were anesthetized and their brain excised, and the prefrontal cortices and sciatic nerve were processed histologically using hematoxylin and eosin. RESULTS: There was memory impairment in the sciatic nerve ligated untreated group which was statistically significant (p<0.05) when compared to the phenytoin-treated, amitriptyline-treated, and sham control groups using the 'Y' maze and NOR tests. Histological quantification showed that the prefrontal cortices of the ligated animals showed increased neural population in comparison to normal control. These increases were significantly marked in the untreated ligated group. Sciatic nerve of untreated ligated group showed high demyelination and axonal degeneration which was ameliorated in the treated animals. CONCLUSIONS: The administration of amitriptyline and phenytoin can ameliorate neuronal injury, demyelination, and memory impairment associated with neuropathic pain in Wistar rats.


Assuntos
Amitriptilina/farmacologia , Transtornos da Memória/prevenção & controle , Neuralgia/tratamento farmacológico , Fenitoína/farmacologia , Nervo Isquiático/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Ligadura/métodos , Masculino , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos
9.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-625357

RESUMO

Background: Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Methods: Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Results: Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. Conclusions: The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

10.
Drug Chem Toxicol ; 38(4): 415-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25367720

RESUMO

BACKGROUND: Parkinsonism describes Parkinson's disease and other associated degenerative changes in the brain resulting in movement disorders. The motor cortex, extrapyramidal tracts and nigrostriatal tract are brain regions forming part of the motor neural system and are primary targets for drug or chemotoxins induced Parkinsonism. The cause of Parkinsonism has been described as wide and elusive, however, environmental toxins and drugs accounts for large percentage of spontaneous cases in humans. A common mechanism in the cause and progression of drug/chemotoxin induced Parkinsonism involves calcium signalling in; oxidative stress, autophagy, cytoskeletal instability and excitotoxicity . AIM: This study sets to investigate the effect of targeting calcium controlling receptors, specifically activation of Vitamin D3 receptor (VDR) and inhibition of N-Methyl-D-Aspartate Receptor (NMDAR) in the motor cortex of mice model of drug induced Parkinsonism. Also we demonstrated how these interventions improved neural activity, cytoskeleton, glia/neuron count and motor-cognitive functions in vivo. METHODS: Adult mice were separated into six groups of n = 5 animals each. Body weight (5 mg/kg) of haloperidol was administered intraperitoneally for 7 days to block dopaminergic D2 receptors and induce degeneration in the motor cortex following which an intervention of VDR agonist (VDRA), and (or) NMDAR inhibitor was administered for 7 days. A set of control animals received normal saline while a separate group of control animals received the combined intervention of VDRA and NMDAR inhibitor without prior treatment with haloperidol. Behavioral tests for motor and cognitive functions were carried out at the end of the treatment and intervention periods. Subsequently, neural activity in the motor cortex was recorded in vivo using unilateral wire electrodes. We also employed immunohistochemistry to demonstrate neuron, glia, neurofilament and proliferation in the motor cortex after haloperidol treatment and the intervention. RESULT/DISCUSSION: We observed a decline in motor function and memory index in the haloperidol treatment group when compared with the control. Similarly, there was a decline in neural activity in the motor cortex (a reduced depolarization peak frequency). General cell loss (neuron and glia) and depletion of neurofilament were characteristic anatomical changes seen in the motor cortex of this group. However, Vitamin D3 intervention facilitated an improvement in motor-cognitive function, neural activity, glia/neuron survival and neurofilament expression. NMDAR inhibition and the combined intervention improved motor-cognitive functions but not as significant as values observed in VDRA intervention. Interestingly, animals treated with the combined intervention without prior haloperidol treatment showed a decline in motor function and neural activity. CONCLUSION: Our findings suggest that calcium mediated toxicity is primary to the cause and progression of Parkinsonism and targeting receptors that primarily modulates calcium reduces the morphological and behavioral deficits in drug induced Parkinsonism. VDR activation was more effective than NMDAR inhibition and a combined intervention. We conclude that targeting VDR is key for controlling calcium toxicity in drug/chemotoxin induced Parkinsonism.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Receptores de Calcitriol/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Antiparkinsonianos/farmacologia , Encéfalo/fisiopatologia , Cálcio/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Haloperidol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Fenótipo , Receptores de Calcitriol/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
11.
Pathophysiology ; 21(3): 199-209, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25156812

RESUMO

BACKGROUND: Vascular occlusion and cyanide neurotoxicity induces oxidative stress and degeneration in the brain. This oxidant induced stress changes the vascular dynamics of cerebral blood vessels, and participates in homeostatic response mechanisms which balance oxygen supply to hypoxic stress-sensitive neurons. The associated changes in vascular morphology include remodeling of the microvasculature and endothelial changes, alterations in regional circulation and variations in the blood brain barrier (BBB). This study compares alterations in physiology of the cerebral artery after a short-term oxidative stress induced by cyanide toxicity and vascular occlusion. METHOD: Adult Wistar rats (N=30) were divided into three groups; vascular occlusion (VO) (n=12), potassium cyanide administration (CN) (n=12) and Control-CO (n=6). The CN rates were treated with 30mg/kg of orally administered KCN while the VO was subjected to global vascular occlusion, both for a duration of 10 days, described as the treatment phase. Control animals were fed on normal rat chow and water for 10 days. At the end of the treatment phase, n=6 animals in each of the VO, CN and VO groups were anesthetized with sodium pentobarbital (50IP) and the CCA exposed, after which pin electrodes were implanted to record the spikes form the tunica media of the CCA. After day 10, treatment was discontinued for these animals, each remaining in the VO and CN groups (VO-I and CN-I) until day 20 (withdrawal phase) following which the spikes were recorded using the procedure described above. RESULTS/DISCUSSION: Vascular occlusion and cyanide toxicity increased vascular resistance in the MCA (reduced lumen thickness ratio) and increased the diameter of the CCA after the treatment phase of 10 days. After 10 days of withdrawal, the VO group showed a reduction in resistance and an increase in the lumen width/wall thickness ratio (LWR) while the CN group showed increased resistance and a reduction in LWR. CONCLUSION: Cyanide toxicity increased vascular resistance by inducing degenerative changes in the wall of the artery while vascular occlusion increased resistance through mechanical stress and increased thickness of arterial wall. After the withdrawal phase, vascular resistance diminished in the VO to a significantly greater extent than the CN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...