Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196054

RESUMO

Illicit drug use has become a global issue, posing significant health, socioeconomic, and cultural risks. The study examined essential trace metals: selenium, zinc, and copper in blood concentrations, as well as in serum and scalp hair samples, from 240 male drug-abuse subjects/patients aged 18-45, categorized into three age groups. The study compared 45 healthy subjects of the same age group using an acid digestion method supported by a microwave oven during sample preparation. The technique of atomic absorption spectrometry was employed to identify essential and toxic elements, utilizing certified reference materials for accuracy. According to a recent study, plasma zinc and selenium concentrations in drug abusers are lower than those in referent subjects, potentially increasing vulnerability to infection due to poor nutritional status or other contaminants.

2.
Environ Sci Pollut Res Int ; 29(43): 65161-65175, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35482238

RESUMO

In this study, highly efficient Fe/Bi bimetallic magnetic nanooxides (IBBMNOs) were used as adsorbent for the removal of Cr(VI) from an aqueous environment. The IBBMNOs were synthesized by a simple and facile chemical reduction method. After that, different analytical techniques were used to characterize the resultant nanomaterial. According to characterization results, the IBBMNOs are highly porous look like cotton beads with an average size of 60-69 nm. BET results show that IBBMNOs are highly porous with a high surface area. After optimizing different parameters such as pH, adsorbent dose, and time study, an excellent adsorption capacity was achieved up to 185 mg/g in 10 min. The calculated data of the adsorption process was well fitted with Langmuir and pseudo-first-order kinetic model. The prepared materials have good usability as compared to reported adsorbent materials can be used for five different cycles with good removal efficiency of chromium ion from aqueous samples. Schematic illustration of adsorption of Cr(VI) from aqueous solution by IBBMNOs.


Assuntos
Óxidos , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Água/química , Poluentes Químicos da Água/análise
3.
Environ Technol ; 43(23): 3631-3645, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33979265

RESUMO

Efficient nanocatalyst with incredible performance is highly demanding in a heterogeneous catalysis system. Herein, we report the facile fabrication of uniform and highly stable Cerium Oxide nanoparticles (CeO2 NPs), through chemical precipitation method using sodium hydroxide as reducing agent. The synthesized material is characterized through highly sophisticated techniques including UV-Visible, FT-IR, SEM, AFM, XRD, and Zeta Sizer- Potential to check the particle formation, surface morphology, topography, crystalline nature, size, and surface potential. The heterogeneous catalytic performance of CeO2 NPs has been accomplished for the reduction of 2-nitroaniline from the aqueous media. The CeO2 nanocatalyst displayed excellent reusability, while the reduction in several repetitive catalytic cycles against 2-nitroaniline under optimized conditions. The CeO2 nanocatalyst shows 99.12% efficiency within 60s reaction time under a greener source of microwave radiation.


Assuntos
Cério , Micro-Ondas , Compostos de Anilina , Catálise , Cério/química , Cério/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Environ Sci Pollut Res Int ; 28(29): 40022-40034, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33770354

RESUMO

A new nickel ion, magnetic imprinted polymer was fabricated through the precipitation polymerization process, using amine-functionalized silica-capped iron oxide particles as a core material, and 4-vinyl pyridine as complexing agent methacrylic acid as functional monomer. The resulted magnetic adsorbent was employed to eliminate toxic Ni2+ ions from industrial wastewater. The different parameters were optimized, such as pH, shaking speed, and adsorbent dose, to obtain the maximum adsorption capacity. The synthesized material showed high selectivity coefficient for Ni+2 ions in the presence of other competitive ions and followed pseudo-second-order kinetics and Langmuir isotherm. A good adsorption capacity of 158.73 mg g-1 was obtained at optimized pH 6 in the concentration of 5 mg L-1 nickel ions aqueous solution. The limit of detection, quantification, and the percent relative standard deviation was found to be 0.58, 1.93, and 3.4%. This proves the excellent performance of prepared magnetic Ni(II) ion-imprinted polymer for selective detoxification of Ni2+ ions from real aqueous samples. Due to tunable magnetic properties, the prepared MMIPs are highly selective and sensitive and highly porous in nature; due to excellent magnetic properties, there is no need for centrifugation. Just use external magnetic field, it has good reusability. Showing preparation of Ni (II) imprinted magnetic polymer.


Assuntos
Níquel , Polímeros , Adsorção , Cinética , Fenômenos Magnéticos , Magnetismo
5.
Turk J Chem ; 45(1): 181-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688861

RESUMO

In this study, we report a simple and economic one-pot synthesis of magnetite (Fe3O4) nanostructure and its modification with tetraethyl orthosilicate by coprecipitation method. The synthesized (Fe3O4@SiO2) nano sorbent was applied for enhanced adsorptive removal of methylene blue by ultrasonic wave driven batch experiments. After successful synthesis, the nanostructure was characterized for their physical structure by FT-IR, VSM, TEM, and XRD. For the maximum adsorptive performance of nano sorbent, various parameters were optimized, such as dose, pH, time, concentration, and temperature. The adsorption mechanism was best fitted by Langmuir isotherm with a maximum capacity of 148.69 mg/g, while kinetics best fitted by pseudo-second-order kinetic. The synthesized nano sorbent was successfully applied for enhanced adsorptive removal of toxic methylene blue from aqueous media. The proposed method is promising and effective in terms of simplicity, cost operation, green energy consumption, reproducible, excellent reusability, and magnetically separability with fast kinetic.

6.
Environ Sci Pollut Res Int ; 28(1): 947-959, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32829430

RESUMO

Innovative titania nanostructures were synthesized via efficient and prolific liquid phase deposition route and efficiently utilized for catalytic degradation of Eosin Y. The as-synthesized TiO2@ITO nanostructures were subjected to various characterization tactics that confirmed the efficacious fabrication of nanostructures. The minute size of particles around 5-6 nm having anatase crystalline phase and concrete like morphology was greatly revealed by atomic force microscopy, XRD, and SEM, respectively. The resulting nanoconcretes were employed for photocatalytic degradation of Eosin Y dye in aqueous medium. The effects of various experimental parameters such as the reducing agent concentration, sunlight, time, catalytic dose, and microwave power were investigated for the potential photocatalytic degradation. The proposed TiO2@ITO nanostructures showed potential photocatalytic efficiency then previously reported nanomaterial for degradation of toxic Eosin Y dye; it shows approximately 99.8% dye degraded within 50-60 s using only 100 µg of nanocatalyst under optimized conditions. Owing to minute size, topography and electron-hole pair abilities TiO2@ITO nanostructures suggest an exceptional icon at the commercial level for successful degradation of toxic pollutants.Graphical abstract.


Assuntos
Titânio , Água , Catálise , Amarelo de Eosina-(YS)
7.
Environ Sci Pollut Res Int ; 27(9): 9970-9978, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31933082

RESUMO

In this study, nano-sized ITO supported Pt-Pd bimetallic catalyst was synthesized for the degradation of methyl parathion pesticide, a common extremely toxic contaminant in aqueous solution. On the characterization with different techniques, a beautiful scenario of honeycomb architecture composed of ultra-small nanoneedles or fine hairs was found. Average size of nanocatalyst also confirmed which was in the range of 3-5 nm. High percent degradation (94%) was obtained in 30 s using 1.5 × 10- 1 mg of synthesized nanocatalyst, 0.5 mM NaBH4, and 110 W microwave radiations power. Recyclability of nanocatalyst was efficient till 4th cycle observed during study of reusability. The supported Pt-Pd bimetallic nanocatalyst on ITO displayed many advantages over conventional methods for degradation of methyl parathion pesticide, such as high percent degradation, short reaction time, small amount of nanocatalyst, and multitime reusability. Graphical abstract Schematic illustration of reaction for degradation of methyl parathion.


Assuntos
Metil Paration , Praguicidas/análise , Catálise , Água
8.
Turk J Chem ; 44(5): 1376-1385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488237

RESUMO

The presented work demonstrates the preparation of copper nanoparticles (CuNPs) via aqueous leaves extract of Ziziphus mauritiana L. ( Zm ) using hydrazine as a reducing agent. Various parameters such as volume of extract, concentration of hydrazine hydrate, concentration of copper chloride, and pH of the solution were optimized to obtain Ziziphus mauritiana L. leaves extract derived copper nanoparticles ( Zm -CuNPs). Brownish red color was initial indication of the formation of Zm -CuNPs while it was confirmed by surface plasmon resonance (SPR) band at wavelength of 584 nm using ultraviolet-visible (UV-vis) spectroscopy. Synthesized Zm -CuNPs were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffractometry (XRD). AFM images showed that the particle size of Zm -CuNPs was from 7 to 17 nm with an average size of 11.3 nm. Fabricated sensor ( Zm -CuNPs) were used as a colorimetric sensor for the detection of Ag + at a linear range between 0.67 × 10 -6 - 9.3 × 10 -6 with R 2 value of 0.992. For real water samples, limit of quantification (LOQ) and limit of detection (LOD) for Ag + was found to be 330 × 10 -9 and 100 × 10 -9 , respectively.

9.
Nanomaterials (Basel) ; 9(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726731

RESUMO

We report a novel, simple, efficient, and green protocol for biogenic synthesis of silver nanoparticles (AgNPs) in aqueous solution using clove (Syzygium aromaticum) extract as a reducing and protecting agent. Ultraviolet-visible (UV-Vis) spectroscopy was employed to monitor the localized surface plasmon resonance (LSPR) band of clove extract-derived AgNPs prepared under various conditions. Fourier-transform infrared (FTIR) spectroscopy analysis provided information about the surface interaction of the clove extract with the AgNPs. Ultrahigh-resolution transmission electron microscopy (UHRTEM) results confirmed the formation of spherical, uniformly distributed clove extract-capped AgNPs with sizes in the range of 2-20 nm (average size: 14.4 ± 2 nm). Powder X-ray diffractometry analysis (PXRD) illustrated the formation of pure crystalline AgNPs. These AgNPs were tested as a colorimetric sensor to detect trace amounts of vinclozolin (VIN) by UV-Vis spectroscopy for the first time. The AgNP-based sensor demonstrated very sensitive and selective colorimetric detection of VIN, in the range of 2-16 µM (R2 = 0.997). The developed sensor was green, simple, sensitive, selective, economical, and novel, and could detect trace amounts of VIN with limit of detection (LOD) = 21 nM. Importantly, the sensor was successfully employed for the determination of VIN in real water samples collected from various areas in Turkey.

10.
Water Sci Technol ; 78(5-6): 1148-1158, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30339539

RESUMO

In many parts of the world, cadmium metal concentration in drinking water is higher than some international guideline values. To reduce its level below the safety limit, a sustainable and environmental friendly approach is crucial. Thereby, present article introduce an efficient, non-pathogenic and a novel fungal biosorbent Pleurotus eryngii for the removal of Cd(II) ions from aqueous system. The efficiency of P. eryngii were improved and optimized by investigating many significant factors such as; pH, biosorbent dose, initial Cd(II) ion concentration, temperature and contact time. Maximum Cd(II) ions removal (99.9%) was achieved at pH 5.0, biosorbent dosage 0.2 g/10 mL, concentration 20 mg L-1, time 10 min and temperature 50 °C. The isotherm and kinetic models revealed bioremediation of Cd(II) ions as monolayer coverage with biosorption capacity of 1.51 mg g-1 following pseudo second order reaction. Moreover, thermodynamic parameters such as ΔG°, ΔH°, and ΔS° showed that the removal of Cd(II) ions is spontaneous and endothermic in nature. Batch elution process revealed that the complete elution of Cd(II) ions from the biomass were achieved using 0.1 N HNO3 solution. The sorption efficiency decreased from 99.99 to 56.89% as the biomass were recycled up to five times. The efficiency of Cd(II) ions removal from real water samples lies between 85 and 90%. Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopic (EDS) and atomic force microscopic (AFM) analysis of fungal biomass confirmed that the Cd(II) ions were the most abundant species on the biomass surface after the sorption process.


Assuntos
Biodegradação Ambiental , Cádmio/química , Pleurotus/fisiologia , Poluentes Químicos da Água/química , Adsorção , Biomassa , Descontaminação , Concentração de Íons de Hidrogênio , Íons/análise , Espectrometria por Raios X , Temperatura , Água/química , Purificação da Água
11.
ACS Omega ; 3(9): 11526-11536, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459253

RESUMO

A combinative effect of two or more individual material properties, such as lattice parameters and chemical properties, has been well-known to generate novel nanomaterials with special crystal growth behavior and physico-chemical performance. This paper reports unusually high catalytic performance of AgPt nanoferns in the hydrogenation reaction of acetone conversion to isopropanol, which is several orders higher compared to the performance shown by pristine Pt nanocatalysts or other metals and metal-metal oxide hybrid catalyst systems. It has been demonstrated that the combinative effect during the bimetallisation of Ag and Pt produced nanostructures with a highly anisotropic morphology, i.e., hierarchical nanofern structures, which provide high-density active sites on the catalyst surface for an efficient catalytic reaction. The extent of the effect of structural growth on the catalytic performance of hierarchical AgPt nanoferns is discussed.

12.
ACS Appl Mater Interfaces ; 7(14): 7776-85, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25807116

RESUMO

This paper reports a facile, solution-phase approach to synthesizing a one-dimensional amorphous face-centered-cubic (fcc) platinum (a-Pt) nanostructure (nanofibers) directly on an indium-tin oxide (ITO) substrate. The electron microscopy analysis result shows that the a-Pt nanofiber has a diameter and length of approximately 50 nm and 1 µm, respectively, and is grown in high density on the entire surface of the ITO substrate. The X-ray photoelectron spectroscopy analysis result further reveals that the a-Pt nanofibers feature metallic properties with highly reactive surface chemistry, promising novel performance in electrochemistry, catalysis, and sensors. A synergetic interplay between the formic acid reducing agent and the hexamethylenetetramine surfactant in the reduction of Pt ions is assumed as the driving force for the formation of the amorphous phase in the Pt nanostructure. The catalytic properties of a-Pt were examined in the acetone hydrogenation reaction under microwave irradiation. a-Pt shows excellent heterogeneous catalytic properties for converting acetone to isopropyl alcohol with turnover number and frequency as high as 400 and 140 min(-1), respectively. The preparation and formation mechanism of the a-Pt nanofibers will be discussed in detail in this paper.

13.
ACS Appl Mater Interfaces ; 7(12): 6480-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25785883

RESUMO

Magnetite nanoparticles were successfully synthesized and effectively employed as heterogeneous catalyst for hydrogenation of ketone moiety to alcohol moiety by NaBH4 under the microwave radiation process. The improvement was achieved in percent recovery of isopropyl alcohol by varying and optimizing reaction time, power of microwave radiations and amount of catalyst. The catalytic study revealed that acetone would be converted into isopropyl alcohol (IPA) with 99.5% yield in short period of reaction time, using 10 µg of magnetite NPs (Fe3O4). It was observed that the catalytic hydrogenation reaction, followed second-order of reaction and the Langmuir-Hinshelwood kinetic mechanism, which elucidated that both reactants get adsorb onto the surface of silica coated magnetite nanocatalyst to react. Consequently, the rate-determining step was the surface reaction of acetone and sodium borohydride. The current study revealed an environment friendly conversion of acetone to IPA on the basis of its fast, efficient, and highly economical method of utilization of microwave irradiation process and easy catalyst recovery.

14.
ACS Comb Sci ; 16(7): 314-20, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24919039

RESUMO

This Research Article reports an unusually high efficiency heterogeneous photodegradation of methyl orange (MO) in the presence of Ag nanoparticle-loaded ZnO quasi-nanotube or nanoreactor (A-ZNRs) nanocatalyst grown on FTO substrate. In typical process, photodegradation efficiency of as high as 21.6% per µg per Watts of used catalyst and UV power can be normally obtained within only a 60-min reaction time from this system, which is 10(3) order higher than the reported results. This is equivalent to the turnover frequency of 360 mol mol(-1) h(-1). High-density hexagonal A-ZNRs catalysts were grown directly on FTO substrate via a seed-mediated microwave-assisted hydrolysis growth process utilizing Ag nanoparticle of approximately 3 nm in size as nanoseed and mixture aqueous solution of Zn(NO3)·6H2O, hexamethylenetetramine (HMT), and AgNO3 as the growth solution. A-ZNRs adopts hexagonal cross-section morphology with the inner surface of the reactor characterized by a rough and rugged structure. Transmission electron microscopy imaging shows the Ag nanoparticle grows interstitially in the ZnO nanoreactor structure. The high photocatalytic property of the A-ZNRs is associated with the highly active of inner side's surface of A-ZNRs and the oxidizing effect of Ag nanoparticle. The growth mechanism as well as the mechanism of the enhanced-photocatalytic performance of the A-ZNRs will be discussed.


Assuntos
Nanopartículas/química , Processos Fotoquímicos , Prata/química , Óxido de Zinco/química , Catálise , Nanotecnologia , Tamanho da Partícula , Propriedades de Superfície , Raios Ultravioleta
15.
Ultrason Sonochem ; 21(2): 754-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24184009

RESUMO

The crystallographic plane of the ZnO nanocrystals photocatalyst is considered as a key parameter for an effective photocatalysis, photoelectrochemical reaction and photosensitivity. In this paper, we report a simple method for the synthesis of a new (101) high-energy plane bounded ZnO nanocubes photocatalyst directly on the FTO surface, using a seed-mediated ultrasonic assisted hydrolysis process. In the typical procedure, high-density nanocubes and quasi-nanocubes can be grown on the substrate surface from a solution containing equimolar (0.04 M) zinc nitrate hydrate and hexamine. ZnO nanocubes, with average edge-length of ca. 50 nm, can be obtained on the surface in as quickly as 10 min. The heterogeneous photocatalytic property of the sample has been examined in the photodegradation of methyl orange (MO) by UV light irradiation. It was found that the ZnO nanocubes exhibit excellent catalytic and photocatalytic properties and demonstrate the photodegradation efficiency as high as 5.7 percent/µg mW. This is 200 times higher than those reported results using a relatively low-powered polychromatic UV light source (4 mW). The mechanism of ZnO nanocube formation using the present approach is discussed. The new-synthesized ZnO nanocubes with a unique (101) basal plane also find potential application in photoelectrochemical devices and sensing.

16.
ACS Appl Mater Interfaces ; 5(19): 9843-9, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24025235

RESUMO

Highly efficient and remarkable selective acetone conversion to isopropanol has been achieved via a heterogeneous catalytic hydrogenation of acetone by NaBH4 in the presence of semihollow palladium nanoparticles (PdNPs) grown on ITO substrate. PdNPs with high surface defect grown on an indium tin oxide (ITO) surface were prepared via a simple immersion of the substrate into a solution containing K2PdCl6, sodium dodecyl sulphate (SDS), and formic acid for 2 h at room temperature. The sample showed remarkably high heterogeneous catalytic efficiency by producing 99.8% of isopropanol within 6 min using only 0.28 µg of PdNPs on the ITO surface. The present system exhibits heterogenenous catalytic hydrogenation efficiency 1 × 10(6) time higher than using the conventional Raney Ni system.

17.
J AOAC Int ; 92(1): 248-56, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19382583

RESUMO

Partial least-squares regression was applied for the simultaneous determination of iron, vanadium, and cobalt after complexation with picolinaldehyde-4-phenyl-3-thiosemicarbazone (PAPT) in the presence of anionic sodium dodecylsulfate (SDS) micelles. These 3 complexed metal ions exhibited overlapping spectra in the 390-510 nm region with a maximum absorbance at 415 nm at pH 3.0 and enhanced absorbance in the presence of SDS. The data for the simultaneous determination of these metal ions were analyzed using a simple partial least-squares (SIMPLS) algorithm. Formation constants (log Kf) were found to be 4.65, 3.29, and 4.85 for PAPT complexes of Fe, V, and Co, respectively, and the detection limits for Fe, V, and Co were 0.013, 0.002, and 0.010 microg/mL, respectively. Common anions and cations did not interfere with the proposed method. The method was validated by calculating root mean square error of cross-validation, root mean square error of calibration, and root mean square error of prediction and was applied to determine these 3 metal ions in real crude oil samples.


Assuntos
Cobalto/análise , Ferro/análise , Vanádio/análise , Ânions , Cátions , Indicadores e Reagentes , Análise dos Mínimos Quadrados , Micelas , Fenóis , Piridinas , Análise de Regressão , Reprodutibilidade dos Testes , Semicarbazidas , Sensibilidade e Especificidade , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...