Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(16): 20451-20475, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33410023

RESUMO

Cement is a basic requirement of today's society and is the only thing that humans consume more volume than water, but cement manufacturing is the most energy- and emission-intensive process. Hence, the cement industry is currently under pressure to reduce greenhouse gases (GHGs) emissions. Climate change mitigation strategies implemented in the industry leads to GHGs reduction, climate risks, pollutants, and another adverse impact on the environment. In order to implement climate change mitigation strategies in the cement industry, a careful analysis of barriers that hinder the emission reduction must be taken. However, most existing research on the barriers to mitigation measures is focused on developed countries. Among the most important emerging economies, India, the second-largest producer and consumer of cement, faces challenges to implement emission reduction measures. To bridge this gap, this paper identifies and evaluates the barriers and solutions to overcome these barriers in the context of India. This study employs a three-phase methodology based on fuzzy analytical hierarchy process (AHP) and fuzzy technique for order performance by similarity to ideal solution (TOPSIS) to identify barriers and solutions to overcome these barriers to climate change mitigation strategies adoption in Indian cement industry. Fuzzy AHP is employed to prioritize these barriers, and to rank solutions of these barriers, Fuzzy TOPSIS is employed. Ten Indian cement manufacturing industry is taken to illustrate the proposed three-phase methodology. Finally, the result of the analysis offers an effective decision support tool to the Indian cement industry to eliminate and overcome barriers to mitigation strategies adoption and build their green image in the market.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Materiais de Construção , Gases de Efeito Estufa/análise , Humanos , Índia , Indústrias
2.
Environ Pollut ; 252(Pt A): 863-878, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202139

RESUMO

Concrete, a cement-based product is the highest manufactured and second highest consumed product after water on earth. Across the world, production of cement is the most energy and emission intensive industry hence, the cement industry is currently under pressure to reduce greenhouse gases emissions (GHGEs). However, reducing the GHGEs of the cement industry especially for developing country like India is not an easy task. Cement manufacturing industry needs to focus on significant climate change mitigation strategies to reduce the GHGEs to sustain its production. This study aims at identifying significant climate change mitigation strategies of the cement manufacturing industry in the context of India. Extant literature review and expert opinion are used to identify climate change mitigation strategies of the cement manufacturing industry. In the present study, a model projects by applying both AHP and DEMATEL techniques to assess the climate change mitigation strategies of the cement industry. The AHP technique help in establishing the priorities of climate change mitigation strategies, while the DEMATEL technique forms the causal relationships among them. Through AHP, the results of this research demonstrate that Fuel emission reduction is on top most priority while the relative importance priority of the main remaining factors is Process emission reduction - Electric energy-related emission - Emission avoidance and reduction - Management mitigation measures. The findings also indicate that the main factors, Process emission reduction, and Fuel emission reduction are categorized in cause group factors, while the remaining factors, Electric energy-related emission, Emission avoidance and reduction and Management mitigation measures are in effect group factors. Present model will help supply chain analysts to develop both short-term and long-term decisive measures for effectively managing and reducing GHGEs.


Assuntos
Mudança Climática , Materiais de Construção/análise , Recuperação e Remediação Ambiental/métodos , Gases de Efeito Estufa/análise , Índia , Indústria Manufatureira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...