Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 227: 105920, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821317

RESUMO

COVID-19 pandemic is predominantly caused by SARS-CoV-2, with its main protease, Mpro, playing a pivotal role in viral replication and serving as a potential target for inhibiting different variants. In this study, potent Mpro inhibitors were identified from glycyrrhizic acid (GL) derivatives with amino acid methyl/ethyl esters. Out of the 17 derivatives semisynthesized, Compounds 2, 6, 9, and 15, with methionine methyl esters, D-tyrosine methyl esters, glutamic acid methyl esters, and methionines in the carbohydrate moiety, respectively, significantly inhibited wild-type SARS-CoV-2 Mpro-mediated proteolysis, with IC50 values ranging from 0.06 µM to 0.84 µM. They also demonstrated efficacy in inhibiting trans-cleavage by mutant Mpro variants (Mpro_P132H, Mpro_E166V, Mpro_P168A, Mpro_Q189I), with IC50 values ranging from 0.05 to 0.92 µM, surpassing nirmatrelvir (IC50: 1.17-152.9 µM). Molecular modeling revealed stronger interactions with Valine166 in the structural complex of Mpro_E166V with the compounds compared to nirmatrelvir. Moreover, these compounds efficiently inhibited the post-entry viral processes of wild-type SARS-CoV-2 single-round infectious particles (SRIPs), mitigating viral cytopathic effects and reducing replicon-driven GFP reporter signals, as well as in vitro infectivity of wild-type, Mpro_E166V, and Mpro_Q189I SRIPs, with EC50 values ranging from 0.02 to 0.53 µM. However, nirmatrelvir showed a significant decrease in inhibiting the replication of mutant SARS-CoV-2 SRIPs carrying Mpro_E166V (EC50: >20 µM) and Mpro_Q189I (EC50: 13.2 µM) compared to wild-type SRIPs (EC50: 0.06 µM). Overall, this study identifies four GL derivatives as promising lead compounds for developing treatments against various SARS-CoV-2 strains, including Omicron, and nirmatrelvir-resistant variants.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Farmacorresistência Viral , Ácido Glicirrízico , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Humanos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Ésteres/farmacologia , Ésteres/química , Chlorocebus aethiops , Tratamento Farmacológico da COVID-19 , Animais , Células Vero , Simulação de Acoplamento Molecular , Replicação Viral/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , COVID-19/virologia , Aminoácidos/farmacologia , Indóis/farmacologia , Indóis/química , Mutação , Lactamas , Leucina , Nitrilas , Prolina
2.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142222

RESUMO

Dengue virus (DENV) is one of the most geographically distributed mosquito-borne flaviviruses, like Japanese encephalitis virus (JEV), and Zika virus (ZIKV). In this study, a library of the known and novel Glycyrrhizic acid (GL) derivatives bearing amino acid residues or their methyl/ethyl esters in the carbohydrate part were synthesized and studied as DENV inhibitors in vitro using the cytopathic effect (CPE), viral infectivity and virus yield assays with DENV1 and DENV-2 in Vero E6 and A549 cells. Among the GL conjugates tested, compound hits GL-D-ValOMe 3, GL-TyrOMe 6, GL-PheOEt 11, and GL-LysOMe 21 were discovered to have better antiviral activity than GL, with IC50 values ranging from <0.1 to 5.98 µM on the in vitro infectivity of DENV1 and DENV2 in Vero E6 and A549 cells. Compound hits 3, 6, 11, and 21 had a concentration-dependent inhibition on the virus yield in Vero E6, in which GL-D-ValOMe 3 and GL-PheOEt 11 were the most active inhibitors of DENV2 yield. Meanwhile, the time-of-addition assay indicated that conjugates GL-D-ValOMe 3 and GL-PheOEt 11 exhibited a substantial decrease in the DENV2 attachment stage. Subsequently, chimeric single-round infectious particles (SRIPs) of DENV2 C-prM-E protein/JEV replicon and DENV2 prM-E/ZIKV replicon were utilized for the DENV envelope I protein-mediated attachment assay. GL conjugates 3 and 11 significantly reduced the attachment of chimeric DENV2 C-prM-E/JEV and DENV2 prM-E/ZIKV SRIPs onto Vero E6 cells in a concentration-dependent manner but did not impede the attachment of wild-type JEV CprME/JEV and ZIKV prM-E/ZIKV SRIPs, indicating the inhibition of Compounds 3 and 11 on DENV2 E-mediated attachment. Molecular docking data revealed that Compounds 3 and 11 have hydrophobic interactions within a hydrophobic pocket among the interfaces of Domains I, II, and the stem region of the DENV2 envelope (E) protein. These results displayed that Compounds 3 and 11 were the lead compounds targeting the DENV E protein. Altogether, our findings provide new insights into the structure−activity relationship of GL derivatives conjugated with amino acid residues and can be the new fundamental basis for the search and development of novel flavivirus inhibitors based on natural compounds.


Assuntos
Vírus da Dengue , Dengue , Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Flavivirus , Infecção por Zika virus , Zika virus , Aminoácidos/metabolismo , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Carboidratos , Dengue/tratamento farmacológico , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Humanos , Simulação de Acoplamento Molecular
3.
Bioorg Med Chem ; 41: 116204, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022526

RESUMO

Zika virus (ZIKV) is an arbovirus of the Flaviviridae family (Flavivirus genus), causing serious neurological complications, such as Guillain-Barre Syndrome (GBS) in adults and fetal microcephaly. Licensed vaccines or specific antiviral agents against ZIKV do not currently exist. Therefore, the search and development of anti-ZIKV agents are particularly relevant and necessary. Glycyrrhetinic (3ß-hydroxy-11-oxo-18ßH-Olean-12-en-30-oic acid) (GA) 1 is one of the well-known pentacyclic triterpenoids isolated from licorice root (Glycyrrhiza glabra L., Gl. uralensis Fisher) (Leguminosae) possessing many biological features, including antiviral activity. This paper is devoted to the synthesis and studies of a number of nitrogen and sulfur-containing GA derivatives as ZIKV inhibitors. Sixteen GA and related triterpenoids (3ß-hydroxy-18ßH-Olean-12-en-30-oic acid and 3ß-hydroxy-11-oxo-18ßH-Olean-12(13),18(19)-dien-30-oic acid) derivatives were synthesized (amides, semi- and thiosemicarbazones, and 1,2,3-thiadiazoles) and antiviral activity against ZIKV was studied in vitro, including the inhibitory assays on cytopathic effect (CPE), viral protein synthesis, and replication stages. Four active compounds were found among GA derivatives tested, 13 (3-O-acetyl-30-aminopyridine GA), 16 (3-semicarbazone-30-butyl GA), 18 (1,2,3-thiadiazole-30-methyl GA), and 19 (1,2,3-thiadiazole-30-butyl GA) with IC50 < 1 µM against ZIKV replication. These compounds had a stronger inhibitory activity on ZIKV-induced CPE and viral protein translation in infected cells as compared to derivatives of 11-desoxo-GA. The most active compound was amide 13 (IC50 0.13 µM, TI ˃ 384). Time-of-addition assays indicated that 1,2,3-thiadiazole ring is important for inhibiting viral entry stage (compounds 18 and 19), while the 30-butyl ester group influenced on post-entry stage (compound 19). The molecular docking analysis demonstrated that lead compounds 13 and 19 forms a hydrogen-bond interaction with the catalytic triad (His51-Asp75-Ser135) of ZIKV NS2B-NS3 protease. Therefore, the active GA derivatives are promising for developing new antiviral agents against ZIKV infection.


Assuntos
Antivirais/farmacologia , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Ácido Glicirretínico/síntese química , Humanos , Simulação de Acoplamento Molecular , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Bioorg Med Chem Lett ; 29(20): 126645, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31519375

RESUMO

Dengue virus (DENV) is one of the most geographically distributed pathogenic flaviviruses transmitted by mosquitoes Aedes sps. In this study, the structure-antiviral activity relationships of Glycyrrhizic acid (GL) derivatives was evaluated by the inhibitory assays on the cytopathic effect (CPE) and viral infectivity of DENV type 2 (DENV2) in Vero E6 cells. GL (96% purity) had a low cytotoxicity to Vero E6 cells, inhibited DENV2-induced CPE, and reduced the DENV-2 infectivity with the IC50 of 8.1 µM. Conjugation of GL with amino acids or their methyl esters and the introduction of aromatic acylhydrazide residues into the carbohydrate part strongly influenced on the antiviral activity. Among compounds tested GL conjugates with isoleucine 13 and 11-aminoundecanoic acid 17 were found as potent anti-DENV2 inhibitors (IC50 1.2-1.3 µM). Therefore, modification of GL is a perspective way in the search of new antivirals against DENV2 infection.


Assuntos
Anti-Inflamatórios/química , Antivirais/química , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Ácido Glicirrízico/análogos & derivados , Ácido Glicirrízico/química , Bibliotecas de Moléculas Pequenas/química , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Células Vero/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Bioorg Med Chem Lett ; 25(8): 1742-1746, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801933

RESUMO

This Letter describes the synthesis and antiviral activity study of some glycyrrhizic acid (GL) derivatives against influenza A/H1N1/pdm09 virus in MDCK cells. Conjugation of GL with l-amino acids or their methyl esters, and amino sugar (d-galactose amine) dramatically changed its activity. The most active compounds were GL conjugates with aromatic amino acids methyl esters (phenylalanine and tyrosine) (SI=61 and 38), and S-benzyl-cysteine (SI=71). Thus modification of GL is a perspective route in the search of new antivirals, and some of GL derivatives are potent as anti-influenza A/H1N1 agents.


Assuntos
Antivirais/química , Ácido Glicirrízico/química , Animais , Antivirais/síntese química , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cães , Ácido Glicirrízico/síntese química , Ácido Glicirrízico/farmacologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...