Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 51(5): 1328-1338, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29754449

RESUMO

Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition), while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: Elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance.


Assuntos
Córtex Auditivo , Estimulação Transcraniana por Corrente Contínua , Idoso , Encéfalo , Humanos
2.
Brain Stimul ; 11(1): 118-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29079460

RESUMO

BACKGROUND: Temporal resolution of cortical, auditory processing mechanisms is suggested to be linked to peak frequency of neuronal gamma oscillations in auditory cortex areas (individual gamma frequency, IGF): Individuals with higher IGF tend to have better temporal resolution. HYPOTHESIS: Modulating ongoing gamma activity with transcranial alternating current stimulation (tACS) is expected to improve performance in gap detection (GD) tasks (shorter GD thresholds) if the frequency is higher and to decrease GD performance (longer GD thresholds) if the frequency is lower than IGF. METHODS: For 26 healthy participants the IGF and temporal resolution were identified using an auditory steady state response (ASSR) paradigm and a between-channel GD task. Finite element modelling was used to generate an optimized tACS electrode montage (one channel per hemisphere: FC5-TP7/P7 and FC6-TP8/P8). Afterwards, GD thresholds were examined during tACS (tACS frequency group A: above IGF, tACS frequency group B: below IGF). Relative changes of GD thresholds were compared between groups. Additionally, effects of tACS on oscillatory activity were investigated comparing relative changes of ASSR amplitudes before and after stimulation. RESULTS: Performance of group-A-participants improved significantly during tACS in comparison to performance of group-B-participants. Significant relative changes of ASSR amplitudes were found in both groups. CONCLUSION: The possibility to improve gap detection with individualized stimulation protocols for tACS further supports the link between oscillatory activity and temporal resolution, whereby the improvement of temporal resolution is particularly relevant for the clinical aspect of auditory tACS.


Assuntos
Córtex Auditivo/fisiologia , Ritmo Gama/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Feminino , Humanos , Masculino , Neurônios/fisiologia , Fatores de Tempo
3.
Brain Res ; 1640(Pt B): 243-50, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26453287

RESUMO

Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Ritmo Gama/fisiologia , Memória/fisiologia , Animais , Humanos
4.
Int J Psychophysiol ; 98(1): 1-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26268810

RESUMO

A brief silent gap embedded in an otherwise continuous sound is missed by a human listener when it falls below a certain threshold: the gap detection threshold. This can be interpreted as an indicator that auditory perception is a non-continuous process, during which acoustic input is fragmented into a discrete chain of events. Current research provides evidence for a covariation between rhythmic properties of speech and ongoing rhythmic activity in the brain. Therefore, the discretization of acoustic input is thought to facilitate speech processing. Ongoing oscillations in the auditory cortex are suggested to represent a neuronal mechanism which implements the discretization process and leads to a limited auditory temporal resolution. Since gap detection thresholds seem to vary considerably between individuals, the present study addresses the question of whether individual differences in the frequency of underlying ongoing oscillatory mechanisms can be associated with auditory temporal resolution. To address this question we determined an individual gap detection threshold and a preferred oscillatory frequency for each participant. The preferred frequency of the auditory cortex was identified using an auditory steady state response (ASSR) paradigm: amplitude-modulated sounds with modulation frequencies in the gamma range were presented binaurally; the frequency which elicited the largest spectral amplitude was considered the preferred oscillatory frequency. Our results show that individuals with higher preferred auditory frequencies perform significantly better in the gap detection task. Moreover, this correlation between oscillation frequency and gap detection was supported by high test-retest reliabilities for gap detection thresholds as well as preferred frequencies.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Detecção de Sinal Psicológico/fisiologia , Estimulação Acústica/métodos , Adulto , Limiar Auditivo/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Psicoacústica , Análise Espectral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...