Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Biogeosci ; 125(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33552823

RESUMO

Estimating carbon dioxide (CO2) and methane (CH4) emission rates from reservoirs is important for regional and national greenhouse gas inventories. A lack of methodologically consistent data sets for many parts of the world, including agriculturally intensive areas of the United States, poses a major challenge to the development of models for predicting emission rates. In this study, we used a systematic approach to measure CO2 and CH4 diffusive and ebullitive emission rates from 32 reservoirs distributed across an agricultural to forested land use gradient in the United States. We found that all reservoirs were a source of CH4 to the atmosphere, with ebullition being the dominant emission pathway in 75% of the systems. Ebullition was a negligible emission pathway for CO2, and 65% of sampled reservoirs were a net CO2 sink. Boosted regression trees (BRTs), a type of machine learning algorithm, identified reservoir morphology and watershed agricultural land use as important predictors of emission rates. We used the BRT to predict CH4 emission rates for reservoirs in the U.S. state of Ohio and estimate they are the fourth largest anthropogenic CH4 source in the state. Our work demonstrates that CH4 emission rates for reservoirs in our study region can be predicted from information in readily available national geodatabases. Expanded sampling campaigns could generate the data needed to train models for upscaling in other U.S. regions or nationally.

2.
Ecosystems ; 21(4): 657-674, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31007569

RESUMO

Reservoirs are a globally significant source of methane (CH4) to the atmosphere. However, emission rate estimates may be biased low due to inadequate monitoring during brief periods of elevated emission rates (that is, hot moments). Here we investigate CH4 bubbling (that is, ebullition) during periods of falling water levels in a eutrophic reservoir in the Midwestern USA. We hypothesized that periods of water-level decline trigger the release of CH4-rich bubbles from the sediments and that these emissions constitute a substantial fraction of the annual CH4 flux. We explored this hypothesis by monitoring CH4 ebullition in a eutrophic reservoir over a 7-month period, which included an experimental water-level drawdown. We found that the ebullitive CH4 flux rate was among the highest ever reported for a reservoir (mean = 32.3 mg CH4 m-2 h-1). The already high ebullitive flux rates increased by factors of 1.4-77 across the nine monitoring sites during the 24-h experimental water-level drawdown, but these emissions constituted only 3% of the CH4 flux during the 7-month monitoring period due to the naturally high ebullitive CH4 flux rates that persist throughout the warm weather season. Although drawdown emissions were found to be a minor component of annual CH4 emissions in this reservoir, our findings demonstrate a link between water-level change and CH4 ebullition, suggesting that CH4 emissions may be mitigated through water-level management in some reservoirs.

3.
PLoS One ; 10(7): e0132256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186731

RESUMO

Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention.


Assuntos
Monitoramento Ambiental , Água Subterrânea/análise , Nitrogênio/análise , Cidades , Ecossistema , Humanos , Estados Unidos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...