Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 59: 10-19, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32622862

RESUMO

The EU Bioeconomy Strategy, updated in 2018, in its Action Plan pledges an EU-wide, internationally coherent monitoring system to track economic, environmental and social progress towards a sustainable bioeconomy. This paper presents the approach taken by the European Commission's (EC) Joint Research Centre (JRC) to develop such a system. To accomplish this, we capitalise on (1) the experiences of existing indicator frameworks; (2) stakeholder knowledge and expectations; and (3) national experiences and expertise. This approach is taken to ensure coherence with other bioeconomy-related European monitoring frameworks, the usefulness for decision-making and consistency with national and international initiatives to monitor the bioeconomy. We develop a conceptual framework, based on the definition of a sustainable bioeconomy as stated in the Strategy, for a holistic analysis of the trends in the bioeconomy sectors, following the three pillars of sustainability (economy, society and environment). From this conceptual framework, we derive an implementation framework that aims to highlight the synergies and trade-offs across the five objectives of the Bioeconomy Strategy in a coherent way. The EU Bioeconomy Monitoring System will be publicly available on the web platform of the EC Knowledge Centre for Bioeconomy.


Assuntos
Biotecnologia/economia , Desenvolvimento Econômico , União Europeia
2.
Yeast ; 36(4): 223-233, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30192990

RESUMO

Drug resistance mechanisms in human pathogenic Candida species are continually evolving. Over the time, Candida species have acquired diverse strategies to vanquish the effects of various classes of drugs thereby, emanating as a serious life threat. Apart from the repertoire of well-established strategies, which predominantly comprise alteration, overexpression of drug targets, and chromosome duplication, Candida species have evolved a number of permeability constraints for antifungal drugs, via compromised drug import or increased drug efflux. For the latter, genome of Candida species harbour battery of exporters designated as Candida drug resistance genes. These genes predominantly encode membrane efflux transporters, which expel the incoming drugs and thus prevent toxic intracellular accumulation of drugs to manifest multidrug resistance. Such a phenomenon is restricted not only to Candida species but has been observed among many other pathogenic fungal species as well. Notably, the existence of large number of drug exporters in genomes of Candida species posits other pivotal roles for these efflux transporter proteins. The brief review discusses as to how the whole gamut of antifungal research has since been changed to include these new observations wherein reduced permeability of azoles across cell membrane of Candida cells is being implicated as one of the major determinants of antifungal susceptibilities, which all began with the identification of the first multidrug resistance gene CDR1, in Andre Goffeau's laboratory back in 1995.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Azóis/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Azóis/farmacologia , Transporte Biológico/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Testes de Sensibilidade Microbiana
3.
Yeast ; 36(4): 195-200, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30194700

RESUMO

Studies in the yeast Saccharomyces cerevisiae have provided much of the basic detail underlying the organization and regulation of multiple or pleiotropic drug resistance gene network in eukaryotic microbes. As with many aspects of yeast biology, the initial observations that drove the eventual molecular characterization of multidrug resistance gene were provided by genetics. This review focuses on contributions from the laboratory of Dr. André Goffeau that uncovered key aspects of the transcriptional regulation of these multidrug resistance genes. André's group made many seminal discoveries that helped lead to the current picture we have of how eukaryotic microbes respond to and deal with a variety of antifungal agents. The importance of the transcriptional contribution to antifungal drugs is illustrated by the large number of drug resistant mutants found in several yeast species that lead to increased activity of transcriptional regulators. The characterization of the Saccharomyces cerevisiae PDR1 gene by the Goffeau group provided the first molecular basis explaining the link between this hyperactive transcription factor and drug resistance.


Assuntos
Antifúngicos/farmacologia , Farmacorresistência Fúngica Múltipla/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transportadores de Cassetes de Ligação de ATP , Proteínas de Ligação a DNA/genética , História do Século XX , História do Século XXI , Proteínas de Membrana/genética , Biologia Molecular/história , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...