Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(17): 4854-4862, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655876

RESUMO

Predictive models of thermodynamic properties of mixtures are paramount in chemical engineering and chemistry. Classical thermodynamic models are successful in generalizing over (continuous) conditions like temperature and concentration. On the other hand, matrix completion methods (MCMs) from machine learning successfully generalize over (discrete) binary systems; these MCMs can make predictions without any data for a given binary system by implicitly learning commonalities across systems. In the present work, we combine the strengths from both worlds in a hybrid approach. The underlying idea is to predict the pair-interaction energies, as they are used in basically all physical models of liquid mixtures, by an MCM. As an example, we embed an MCM into UNIQUAC, a widely-used physical model for the Gibbs excess energy. We train the resulting hybrid model in a Bayesian machine-learning framework on experimental data for activity coefficients in binary systems of 1146 components from the Dortmund Data Bank. We thereby obtain, for the first time, a complete set of UNIQUAC parameters for all binary systems of these components, which allows us to predict, in principle, activity coefficients at arbitrary temperature and composition for any combination of these components, not only for binary but also for multicomponent systems. The hybrid model even outperforms the best available physical model for predicting activity coefficients, the modified UNIFAC (Dortmund) model.

2.
Chem Commun (Camb) ; 56(82): 12407-12410, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32936144

RESUMO

We present a generic way to hybridize physical and data-driven methods for predicting physicochemical properties. The approach 'distills' the physical method's predictions into a prior model and combines it with sparse experimental data using Bayesian inference. We apply the new approach to predict activity coefficients at infinite dilution and obtain significant improvements compared to the physical and data-driven baselines and established ensemble methods from the machine learning literature.

3.
J Phys Chem Lett ; 11(3): 981-985, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31964142

RESUMO

Activity coefficients, which are a measure of the nonideality of liquid mixtures, are a key property in chemical engineering with relevance to modeling chemical and phase equilibria as well as transport processes. Although experimental data on thousands of binary mixtures are available, prediction methods are needed to calculate the activity coefficients in many relevant mixtures that have not been explored to date. In this report, we propose a probabilistic matrix factorization model for predicting the activity coefficients in arbitrary binary mixtures. Although no physical descriptors for the considered components were used, our method outperforms the state-of-the-art method that has been refined over three decades while requiring much less training effort. This opens perspectives to novel methods for predicting physicochemical properties of binary mixtures with the potential to revolutionize modeling and simulation in chemical engineering.

4.
Phys Rev Lett ; 102(5): 058104, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19257562

RESUMO

The lateral-line system is a unique mechanosensory facility of aquatic animals that enables them not only to localize prey, predator, obstacles, and conspecifics, but also to recognize hydrodynamic objects. Here we present an explicit model explaining how aquatic animals such as fish can distinguish differently shaped submerged moving objects. Our model is based on the hydrodynamic multipole expansion and uses the unambiguous set of multipole components to identify the corresponding object. Furthermore, we show that within the natural range of one fish length the velocity field contains far more information than that due to a dipole. Finally, the model we present is easy to implement both neuronally and technically, and agrees well with available neuronal, physiological, and behavioral data on the lateral-line system.


Assuntos
Peixes/fisiologia , Sistema da Linha Lateral/fisiologia , Modelos Biológicos , Animais , Peixes/anatomia & histologia , Sistema da Linha Lateral/anatomia & histologia , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...