Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 249, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23586691

RESUMO

BACKGROUND: Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal's genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. RESULTS: Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. CONCLUSIONS: Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms.


Assuntos
Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Animais , Éxons/genética , Íntrons/genética , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise Espaço-Temporal
2.
Mol Genet Genomics ; 286(2): 95-107, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21655972

RESUMO

Regulatory transcription factors operate in networks, conferring biological robustness that makes dissection of such gene control processes difficult. The nematode Caenorhabditis elegans is a powerful molecular genetic system that allows the close scrutiny needed to understand these processes in an animal, in vivo. Strikingly lower levels of gene expression were observed when a gfp reporter was inserted into C. elegans transcription factor genes, in their broader genomic context, in comparison to when the reporter was fused to just the promoter regions. The lower level of expression is more consistent with endogenous levels of the gene products, based on independent protein and transcript assays. Through successive precise manipulations of the reporter fusion genes, elements essential for the lower level of expression were localised to the protein-coding region. With a closer focus on four transcription factor genes, the expression of both genes encoding transcriptional activators was found to be restricted by a post-transcriptional mechanism while expression of both genes encoding transcriptional repressors was delimited by transcriptional repression. An element through which the transcriptional repression acts for unc-4 was localised to a 30 base-pair region of a protein-encoding exon, with potentially wider implications for how homeobox genes operate. The hypothesis that the distinction in mechanisms delimiting expression of the two types of transcription factor genes, as observed here, may apply more widely is raised. This leads to observations concerning the implications of these different mechanisms on stochastic noise in gene expression and the consequent significance for developmental decisions in general.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Éxons , Genes Reporter , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas
3.
BMC Genomics ; 11: 671, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21110867

RESUMO

BACKGROUND: Proteins may evolve through the recruitment and modification of discrete domains, and in many cases, protein action can be dissected at the domain level. PDZ domains are found in many important structural and signaling complexes, and are generally thought to interact with their protein partners through a C-terminal consensus sequence. We undertook a comprehensive search for protein partners of all individual PDZ domains in C. elegans to characterize their function and mode of interaction. RESULTS: Coupling high-throughput yeast two-hybrid screens with extensive validation by co-affinity purification, we defined a domain-orientated interactome map. This integrates PDZ domain proteins in numerous cell-signaling pathways and shows that PDZ domain proteins are implicated in an unexpectedly wide range of cellular processes. Importantly, we uncovered a high frequency of non-canonical interactions, not involving the C-terminus of the protein partner, which were directly confirmed in most cases. We completed our study with the generation of a yeast array representing the entire set of PDZ domains from C. elegans and provide a proof-of-principle for its application to the discovery of PDZ domain targets for any protein or peptide of interest. CONCLUSIONS: We provide an extensive domain-centered dataset, together with a clone resource, that will help future functional study of PDZ domains. Through this unbiased approach, we revealed frequent non-canonical interactions between PDZ domains and their protein partners that will require a re-evaluation of this domain's molecular function.[The protein interactions from this publication have been submitted to the IMEx (http://www.imexconsortium.org) consortium through IntAct (PMID: 19850723) and assigned the identifier IM-14654].


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Genoma/genética , Domínios PDZ/genética , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/classificação , Sequência Consenso/genética , Imunoprecipitação , Ligação Proteica/genética , Proteoma/química , Proteoma/metabolismo , Reprodutibilidade dos Testes , Técnicas do Sistema de Duplo-Híbrido
4.
BMC Biotechnol ; 10: 27, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20350301

RESUMO

BACKGROUND: Escherichia coli strain EL350 contains chromosomally integrated phage lambda Red recombinase genes enabling this strain to be used for modifying the sequence of resident clones via recombineering. BAC and fosmid clones are highly suitable for modification by recombineering but, because they are present at low (1-2) copies per cell, the DNA is difficult to isolate in high yield and purity. To overcome this limitation vectors, e.g. pCC1FOS, have been constructed that contain the additional replication origin, oriV, which permits copy-number to be induced transiently when propagated in a suitable host strain, e.g. EPI300, that supplies the cognate trans-replication protein TrfA. Previously, we used EL350 and EPI300 sequentially to recombineer oriV-equipped fosmid genomic clones and, subsequently, to induce copy-number of the resulting recombinant clone. To eliminate these intervening DNA isolation and transformation steps we retrofitted EL350 with a PBAD-driven trfA gene generating strain MW005 that supports, independently, both recombineering and copy-number induction. RESULTS: The PBAD-driven copy of cre in EL350 was replaced seamlessly with a copy of trfA, PCR-amplified from EPI300 chromosomal DNA, to generate MW005. This new strain has been used to both generate, via recombineering, a number of reporter gene fusions directly from pCC1FOS-based Caenorhabditis elegans genomic clones and to transiently induce copy-number of fosmid and BAC clones prior to DNA preparation. CONCLUSIONS: By retrofitting EL350, an established 'recombineering' E. coli strain, with a tightly regulated copy of trfA we have produced a new strain, MW005, which combines recombineering capacity with the useful ability to transiently induce copy-number of oriV-equipped clones. By coupling these two steps in a single strain, use of MW005 will enable the more rapid recombineering-mediated production of recombinant clones in the yield and quality necessary for many downstream purposes.


Assuntos
Escherichia coli/genética , Engenharia Genética/métodos , Vetores Genéticos , Origem de Replicação , Animais , Caenorhabditis elegans/genética , Cromossomos Artificiais Bacterianos , Colífagos , Proteínas de Escherichia coli/genética , Dosagem de Genes , Fusão Gênica , Genes Reporter , Recombinação Genética
5.
Mech Ageing Dev ; 130(11-12): 762-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19896965

RESUMO

INTRODUCTION: As in yeast, flies and mammals, over-expression of the Caenorhabditis elegans sirtuin gene sir-2.1 leads to extension of lifespan and deletion of the gene shortens lifespan. The sir-2.1 gene, however, is located in an operon, an organization not taken into account in previous studies of this gene's expression. MATERIALS AND METHODS: Recombineering allowed insertion of both a mCherry and a gfp reporter gene precisely at the end of the two protein-coding regions of the 4.5kb sir-2.1 operon within a 29.3kb genomic DNA fosmid clone. RESULTS AND DISCUSSION: In C. elegans transgenic for this recombineered fosmid, with abundant food, the sir-2.1::mCherry distribution indicated that sir-2.1 is indeed expressed in the hypodermis and many nerve cells, as previously described, but also in the intestine and in muscles. This broader expression of sir-2.1, which would fit with an expectation that SIR2.1 function in influencing lifespan might be required in most cell types, arises from transcription starting with the gene upstream of sir-2.1 in the operon. Importantly, the expression of both genes in the operon increases upon starvation, this induction also depending on the operon promoter. Furthermore, SIR-2.1::mCherry undergoes a dynamic subcellular relocalization through starvation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Dieta , Expressão Gênica , Sirtuínas/genética , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/fisiologia , Restrição Calórica , Privação de Alimentos/fisiologia , Proteínas de Fluorescência Verde/genética , Mucosa Intestinal/metabolismo , Longevidade , Músculos/metabolismo , Óperon/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Sirtuínas/fisiologia
6.
Brief Funct Genomic Proteomic ; 7(3): 175-83, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18332038

RESUMO

Observation of gene expression in situ provides a direct connection between the genetic information in the genome sequence and the fully determined developmental cell lineage of Caenorhabditis elegans. Green Fluorescent Protein (GFP) reporters have been fused with many C. elegans genes, in large-scale projects, by conventional DNA ligation, PCR stitching, Gateway recombination and recombineering. These reporter gene fusions have then been used in C. elegans transformation either by microinjection or microprojectile bombardment. So far, the developmental distributions of GFP, as driven by the C. elegans DNA to which the reporter gene has been attached, have been determined simply from direct examination of the transgenic strains by epifluorescence microscopy. Automation of GFP expression pattern determination promises improvements in both quality and quantity of this data type, facilitating the handling of such expression pattern data within computer databases. As with the descriptions of the developmental cell lineage and the genome sequence, a complete description of gene expression patterns will provide a vital knowledge framework through which a full understanding of the development of this animal can emerge.


Assuntos
Caenorhabditis elegans/genética , Perfilação da Expressão Gênica/métodos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
EMBO J ; 25(19): 4547-56, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17016471

RESUMO

We describe a new member of the F-box family, Pof14, which forms a canonical, F-box dependent SCF (Skp1, Cullin, F-box protein) ubiquitin ligase complex. The Pof14 protein has intrinsic instability that is abolished by inactivation of its Skp1 interaction motif (the F-box), Skp1 or the proteasome, indicating that Pof14 stability is controlled by an autocatalytic mechanism. Pof14 interacts with the squalene synthase Erg9, a key enzyme in ergosterol metabolism, in a membrane-bound complex that does not contain the core SCF components. pof14 transcription is induced by hydrogen peroxide and requires the Pap1 transcription factor and the Sty1 MAP kinase. Pof14 binds to and decreases Erg9 activity in vitro and a pof14 deletion strain quickly loses viability in the presence of hydrogen peroxide due to its inability to repress ergosterol synthesis. A pof14 mutant lacking the F-box and an skp1-3 ts mutant behave as wild type in the presence of oxidant showing that Pof14 function is independent of SCF. This indicates that modulation of ergosterol level plays a key role in adaptation to oxidative stress.


Assuntos
Ergosterol/metabolismo , Proteínas F-Box/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Adaptação Fisiológica , Catálise , Citoplasma/enzimologia , Ergosterol/biossíntese , Farnesil-Difosfato Farnesiltransferase/metabolismo , Peróxido de Hidrogênio/metabolismo , Microssomos/enzimologia , Proteínas Associadas a Pancreatite , Schizosaccharomyces/citologia
8.
EMBO J ; 24(7): 1440-52, 2005 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-15775961

RESUMO

SCF-type (SCF: Skp1-Cullin-F-box protein complex) E3 ligases regulate ubiquitin-dependent degradation of many cell cycle regulators, mainly at the G1/S transition. Here, we show that SCF(Grr1) functions during cytokinesis by degrading the PCH protein Hof1. While Hof1 is required early in mitosis to assemble a functional actomyosin ring, it is specifically degraded late in mitosis and remains unstable during the entire G1 phase of the cell cycle. Degradation of Hof1 depends on its PEST motif and a functional 26S proteasome. Interestingly, degradation of Hof1 is independent of APC(Cdh1), but instead requires the SCF(Grr1) E3 ligase. Grr1 is recruited to the mother-bud neck region after activation of the mitotic-exit network, and interacts with Hof1 in a PEST motif-dependent manner. Our results also show that downregulation of Hof1 at the end of mitosis is necessary to allow efficient contraction of the actomyosin ring and cell separation during cytokinesis. SCF(Grr1)-mediated degradation of Hof1 may thus represent a novel mechanism to couple exit from mitosis with initiation of cytokinesis.


Assuntos
Actomiosina/metabolismo , Citocinese/fisiologia , Fase G1/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Western Blotting , Proteínas F-Box , Componentes do Gene , Proteínas de Fluorescência Verde , Meia-Vida , Microscopia de Fluorescência , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína/genética , Transporte Proteico/fisiologia , Leveduras
9.
Biochem Biophys Res Commun ; 325(4): 1424-32, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15555586

RESUMO

The Mcs6 CDK together with its cognate cyclin Mcs2 represents the CDK-activating kinase (CAK) of fission yeast Cdc2. We have attempted to determine complexes in which Mcs6 and Mcs2 mediate this and possible other functions. Here we characterize a novel interaction between Mcs2 and Skp1, a component of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase. Furthermore, we identify a novel protein termed Pmh1 through its association with Skp1. Pmh1 associates with the Mcs6-Mcs2 complex, enhancing its kinase activity, and represents the apparent homolog of metazoan Mat1. Association of Mcs2 or Pmh1 with Skp1 does not appear to be involved in proteolytic degradation, as these complexes do not contain Pcu1, and levels of Mcs2 or Pmh1 are not sensitive to inhibition of SCF and the 26S proteasome. The identified interactions between Skp1 and two regulatory CAK subunits may reflect a novel mechanism to modulate activity and specificity of the Mcs6 kinase.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Saccharomycetales/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Dados de Sequência Molecular , Subunidades Proteicas , Proteínas Recombinantes/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Saccharomycetales/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Quinase Ativadora de Quinase Dependente de Ciclina
10.
J Biol Chem ; 278(11): 9671-7, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12511573

RESUMO

Here we report functional characterization of the essential fission yeast Skp1 homologue. We have created a conditional allele of skp1 (skp1-3f) mimicking the mutation in the budding yeast skp1-3 allele. Although budding yeast skp1-3 arrests at the G(1)/S transition, skp1-3f cells progress through S phase and instead display two distinct phenotypes. A fraction of the skp1-3f cells arrest in mitosis with high Cdc2 activity. Other skp1-3f cells as well as the skp1-deleted cells accumulate abnormal thick septa leading to defects in cell separation. Subsequent identification of 16 fission yeast F-box proteins led to identification of the product of pof6 (for pombe F-box) as a Skp1-associated protein. Interestingly, cells deleted for the essential pof6 gene display a similar cell separation defect noted in skp1 mutants, and Pof6 localizes to septa and cell tips. Purification of Pof6 demonstrates association of Skp1, whereas the Pcu1 cullin was absent from the complex. These findings reveal an essential non-Skp1-Cdc53/Cullin-F-box protein function for the fission yeast Skp1 homologue and the F-box protein Pof6 in cell separation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas F-Box , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Alelos , Sequência de Aminoácidos , Western Blotting , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/química , Separação Celular , Citometria de Fluxo , Deleção de Genes , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mitose , Dados de Sequência Molecular , Mutação , Nitrogênio/metabolismo , Fenótipo , Proteínas Recombinantes de Fusão/metabolismo , Fase S , Proteínas Quinases Associadas a Fase S , Schizosaccharomyces , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...