Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(2): e0211874, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30802254

RESUMO

Crop growth models and remote sensing are useful tools for predicting crop growth and yield, but each tool has inherent drawbacks when predicting crop growth and yield at a regional scale. To improve the accuracy and precision of regional corn yield predictions, a simple approach for assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) products into a crop growth model was developed, and regional yield prediction performance was evaluated in a major corn-producing state, Illinois, USA. Corn growth and yield were simulated for each grid using the Crop Environment Resource Synthesis (CERES)-Maize model with minimum inputs comprising planting date, fertilizer amount, genetic coefficients, soil, and weather data. Planting date was estimated using a phenology model with a leaf area duration (LAD)-logistic function that describes the seasonal evolution of MODIS-derived leaf area index (LAI). Genetic coefficients of the corn cultivar were determined to be the genetic coefficients of the maturity group [included in Decision Support System for Agrotechnology Transfer (DSSAT) 4.6], which shows the minimum difference between the maximum LAI derived from the LAD-logistic function and that simulated by the CERES-Maize model. In addition, the daily water stress factors were estimated from the ratio between daily leaf area/weight growth rates estimated from the LAD-logistic function and that simulated by the CERES-Maize model under the rain-fed and auto-irrigation conditions. The additional assimilation of MODIS data-derived water stress factors and LAI under the auto-irrigation condition showed the highest prediction accuracy and precision for the yearly corn yield prediction (R2 is 0.78 and the root mean square error is 0.75 t ha-1). The present strategy for assimilating MODIS data into a crop growth model using minimum inputs was successful for predicting regional yields, and it should be examined for spatial portability to diverse agro-climatic and agro-technology regions.


Assuntos
Agricultura , Desidratação , Folhas de Planta/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Fertilizantes , Humanos , Illinois , Modelos Teóricos , Chuva , Solo
2.
PLoS One ; 11(11): e0165977, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812185

RESUMO

Increased temperature means and fluctuations associated with climate change are predicted to exert profound effects on the seed yield of soybean. We conducted an experiment to evaluate the impacts of global warming on the phenology and yield of two determinate soybean cultivars in a temperate region (37.27°N, 126.99°E; Suwon, South Korea). These two soybean cultivars, Sinpaldalkong [maturity group (MG) IV] and Daewonkong (MG VI), were cultured on various sowing dates within a four-year period, under no water-stress conditions. Soybeans were kept in greenhouses controlled at the current ambient temperature (AT), AT+1.5°C, AT+3.0°C, and AT+5.0°C throughout the growth periods. Growth periods (VE-R7) were significantly prolonged by the elevated temperatures, especially the R1-R5 period. Cultivars exhibited no significant differences in seed yield at the AT+1.5°C and AT+3.0°C treatments, compared to AT, while a significant yield reduction was observed at the AT+5.0°C treatment. Yield reductions resulted from limited seed number, which was due to an overall low numbers of pods and seeds per pod. Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. Individual seed weight exhibited no significant variation among temperature elevation treatments; thus, seed weight likely had negligible impacts on overall seed yield. A boundary line analysis (using quantile regression) estimated optimum temperatures for seed number at 26.4 to 26.8°C (VE-R5) for both cultivars; the optimum temperatures (R5-R7) for single seed weight were estimated at 25.2°C for the Sinpaldalkong smaller-seeded cultivar, and at 22.3°C for the Daewonkong larger-seeded cultivar. The optimum growing season (VE-R7) temperatures for seed yield, which were estimated by combining the two boundary lines for seed number and seed weight, were 26.4 and 25.0°C for the Sinpaldalkong and Daewonkong cultivars, respectively. Considering the current soybean growing season temperature, which ranges from 21.7 (in the north) to 24.6°C (in the south) in South Korea, and the temperature response of potential soybean yields, further warming of less than approximately 1°C would not become a critical limiting factor for soybean production in South Korea.


Assuntos
Glycine max/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Temperatura , Animais , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...