Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 18(1): 2287883, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38019725

RESUMO

Soybean, a vital protein-rich crop, offers bioactivity that can mitigate various chronic human diseases. Nonetheless, soybean breeding poses a challenge due to the negative correlation between enhanced protein levels and overall productivity. Our previous studies demonstrated that applying gaseous phytohormone, ethylene, to soybean leaves significantly boosts the accumulation of free amino acids, particularly asparagine (Asn). Current studies also revealed that ethylene application to soybeans significantly enhanced both essential and non-essential amino acid contents in leaves and stems. Asn plays a crucial role in ammonia detoxification and reducing fatigue. However, the molecular evidence supporting this phenomenon remains elusive. This study explores the molecular mechanisms behind enhanced Asn accumulation in ethylene-treated soybean leaves. Transcriptional analysis revealed that ethylene treatments to soybean leaves enhance the transcriptional levels of key genes involved in Asn biosynthesis, such as aspartate aminotransferase (AspAT) and Asn synthetase (ASN), which aligns with our previous observations of elevated Asn levels. These findings shed light on the role of ethylene in upregulating Asn biosynthetic genes, subsequently enhancing Asn concentrations. This molecular insight into amino acid metabolism regulation provides valuable knowledge for the metabolic farming of crops, especially in elevating nutraceutical ingredients with non-genetic modification (GM) approach for improved protein content.


Assuntos
Asparagina , Glycine max , Aminoácidos/metabolismo , Asparagina/genética , Asparagina/análise , Asparagina/metabolismo , Etilenos/metabolismo , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
2.
Front Plant Sci ; 13: 1000705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226298

RESUMO

Abundance of metabolites in plant is a critical factor toward being functional food stuff. Salicylic acid (SA) treatment led significant changes in levels of the secondary metabolites in soybean roots. Notably, the exposure of 3 mM of SA aqueous solution to soybean plants for 24 h resulted in distinctive increases in the levels of coumestrol (16-fold, 0.3-4.8 mg/g DW) and daidzein (7-fold, 1.2-8.9 mg/g DW) in roots part. These changes were systematically investigated by LC-ESI-TOF/MS analysis to afford a clear difference of PLS-DA score, heatmap, and box plots. Quantitative analysis showed that SA treatment played to stimulate biosynthesis of coumestrol as well as hydrolysis of its glycosides (coumestrin and malonylcoumestrin). The highly improved anti-LDL oxidation effect was observed in the SA treated soybean roots in the three different assay systems. It might be rationalized by the increased levels of coumestrol and daidzein.

3.
Food Funct ; 13(13): 6923-6933, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35695875

RESUMO

Ethanol extract of soybean (Glycine max (L.) Merr.) showed good inhibitory activity against bacterial neuraminidase (BNA), which plays a pivotal role in the pathogenesis of a number of microbial diseases. The saponin portion fractionated through preparative HPLC (IC50 = 2.25 µg mL-1) was found to be responsible for the observed BNA inhibition. Estimation of the inhibitory effects by individual compounds showed that the soyasaponins of group B (Ba, Bb, Bb', Bc, and Bd) exhibited extremely high inhibitions (IC50 = 0.25-0.48 µM), whereas group A (Aa, Ab, and Ac) was almost inactive. Kinetic studies determined that group B soyasaponins were noncompetitive inhibitors. Furthermore, molecular docking experiments confirmed that soyasaponin Ba (group B) could undergo binding interactions with various residues in the binding pocket. In contrast, soyasaponin Aa (group A) failed to enter the binding pocket due to its extra scaffold structure of oligosaccharides bonded to the 22-hydroxyl position. The metabolites in the soybean extract were fully characterized using UPLC-ESI-TOF/MS.


Assuntos
Fabaceae , Saponinas , Cromatografia Líquida de Alta Pressão , Cinética , Simulação de Acoplamento Molecular , Neuraminidase , Compostos Fitoquímicos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saponinas/química , Saponinas/farmacologia , Glycine max/química
4.
Molecules ; 26(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771010

RESUMO

The aim of this study is to explore anti-inflammatory phytochemicals from B. chinensis based on the inhibition of pro-inflammatory enzyme, human neutrophil elastase (HNE) and anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage. Three stereoisomers of iridal-type triterpenoids (1-3) were isolated from the roots of B. chinensis and their stereochemistries were completely identified by NOESY spectra. These compounds were confirmed as reversible noncompetitive inhibitors against HNE with IC50 values of 6.8-27.0 µM. The binding affinity experiment proved that iridal-type triterpenoids had only a single binding site to the HNE enzyme. Among them, isoiridogermanal (1) and iridobelamal A (2) displayed significant anti-inflammatory effects by suppressing the expressions of pro-inflammatory cytokines, such as iNOS, IL-1ß, and TNF-α through the NF-κB pathway in LPS-stimulated RAW264.7 cells. This is the first report that iridal-type triterpenoids are considered responsible phytochemicals for anti-inflammatory effects of B. chinensis.


Assuntos
Anti-Inflamatórios/farmacologia , Iridaceae/química , Elastase de Leucócito/antagonistas & inibidores , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Elastase de Leucócito/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Conformação Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Triterpenos/química , Triterpenos/isolamento & purificação
5.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672673

RESUMO

In this study, the changes in free amino acids of soybean leaves after ethylene application were characterized based on quantitative and metabolomic analyses. All essential and nonessential amino acids in soybean leaves were enhanced by fivefold (250 to 1284 mg/100 g) and sixfold (544 to 3478 mg/100 g), respectively, via ethylene application. In particular, it was found that asparagine is the main component, comprising approximately 41% of the total amino acids with a twenty-five fold increase (78 to 1971 mg/100 g). Moreover, arginine and branched chain amino acids (Val, Leu, and Ile) increased by about 14 and 2-5 times, respectively. The increase in free amino acid in stem was also similar to the leaves. The metabolites in treated and untreated soybean leaves were systematically identified by gas chromatography-mass spectrometry (GC-MS), and partial variance discriminant analysis (PLS-DA) scores and heat map analysis were given to understand the changes of each metabolite. The application of ethylene may provide good nutrient potential for soybean leaves.


Assuntos
Aminoácidos/metabolismo , Etilenos/metabolismo , Glycine max/química , Aminoácidos/química , Análise Discriminante , Etilenos/química , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/metabolismo , Glycine max/metabolismo
6.
Int J Biol Macromol ; 165(Pt B): 1822-1831, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075336

RESUMO

Ugonins are unique flavonoids with cyclohexyl motif from Helminthostachys zeylanica. Ugonins (1-6) from the target plant displayed significant inhibitions against both PTP1B (IC50s = 0.6-7.3 µM) and α-glucosidase (IC50s = 3.9-32.9 µM), which are crucial enzymes associated with diabetes. A cyclohexyl motif was proved to be the key functionality for PTP1B and α-glucosidase. For example, 1 was 26-fold effective to PTP1B and 15-fold to α-glucosidase than its mother compound, luteolin. This tendency was well elucidated with distinctive differences of binding affinities (KSV) between ugonins and mother compounds to PTP1B enzyme. Inhibitory mechanisms to PTP1B and α-glucosidase were fully characterized to be competitive, non-competitive and mixed type I according to the position of cyclohexyl functionality. In particular, the ugonin J (1) has a cyclohexyl on the B ring was estimated as a reversible, competitive and a slow binding inhibitor with parameters: Kiapp = 0.1234 µM, k3 = 0.5713 µM-1 min-1, and k4 = 0.0705 min-1. In-depth molecular docking experiments disclosed the specific binding sites and residues of competitive inhibitor (1) and non-competitive inhibitor (4) to PTP1B enzymes. As well, all six ugonins (1-6) also inhibited α-glucosidase effectively, in which cyclohexyl motif was also the key functionality of inhibitions.


Assuntos
Cicloexanos/química , Flavonoides/química , Flavonoides/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Traqueófitas/química , alfa-Glucosidases/metabolismo , Flavonoides/farmacologia , Humanos , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Espectrometria de Fluorescência
7.
Molecules ; 25(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640700

RESUMO

Xanthine oxidase is a frontier enzyme to produce oxidants, which leads to inflammation in the blood. Prenylated isoflavones from Flemingia philippinensis were found to display potent inhibition against xanthine oxidase (XO). All isolates (1-9) inhibited XO enzyme with IC50 ranging 7.8~36.4 µM. The most active isoflavones (2-5, IC50 = 7.8~14.8 µM) have the structural feature of a catechol motif in B-ring. Inhibitory behaviors were disclosed as a mixed type I mode of inhibition with KI < KIS. Binding affinities to XO enzyme were evaluated. Fluorescence quenching effects agreed with inhibitory potencies (IC50s). The compounds (2-5) also showed potent anti-LDL oxidation effects in the thiobarbituric acid-reactive substances (TBARS) assay, the lag time of conjugated diene formation, relative electrophoretic mobility (REM), and fragmentation of apoB-100 on copper-mediated LDL oxidation. The compound 4 protected LDL oxidation with 0.7 µM in TBARS assay, which was 40-fold more active than genistein (IC50 = 30.4 µM).


Assuntos
Fabaceae/química , Isoflavonas/análise , Isoflavonas/farmacologia , Lipoproteínas LDL/metabolismo , Raízes de Plantas/química , Tiobarbitúricos/química , Xantina Oxidase/antagonistas & inibidores , Cromatografia Líquida , Cobre/química , Inibidores Enzimáticos/química , Fluorescência , Concentração Inibidora 50 , Isoflavonas/química , Isoflavonas/isolamento & purificação , Cinética , Espectrometria de Massas , Oxirredução , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prenilação , Xantina Oxidase/metabolismo
8.
Bioorg Chem ; 90: 103075, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254671

RESUMO

In the course of an investigation of human neutrophil elastase (HNE) associated with inflammation, the extract of the flower parts of Hypericum ascyron showed a significant influence to HNE. The responsible metabolites to HNE inhibition were found to be eight polyprenylated acylphloroglucinols, PPAPs (1-8) which showed IC50 ranges between 2.4 and 19.9 µM. This is the first report to demonstrate that PPAP skeleton exhibits potent HNE inhibition. The compounds 1-3 were characterized and newly named as ascyronone E (IC50 = 4.3 µM), ascyronone F (IC50 = 19.9 µM), ascyronone G (IC50 = 4.5 µM) based on 2D-NMR spectroscopic data. In the kinetic analysis of double reciprocal plots, all the compounds showed noncompetitive behaviors to HNE enzyme with the remaining of Km and the increase of Vmax. The binding affinity levels (KSV) by using fluorescence were sufficient to be able to prove that PPAPs (1-8) had compliant interaction with inhibitory potencies.


Assuntos
Inibidores Enzimáticos/farmacologia , Flores/química , Elastase de Leucócito/antagonistas & inibidores , Floroglucinol/química , Extratos Vegetais/farmacologia , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular
9.
Bioorg Med Chem ; 27(12): 2499-2507, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30871862

RESUMO

Anti-melanogenesis effects of silymarin from milk thistle have been reported recently, but detailed tyrosinase inhibition properties of individual components have not been investigated. This study purported to substantiate tyrosinase inhibition and its mechanism based on a single metabolite. The responsible components for tyrosinase inhibition of target source were found out as flavonolignans which consist of isosilybin A (1), isosilybin B (2), silydianin (3), 2,3-dihydrosilychristin (4), silychristin A (5), silychristin B (6) and silybin (7), respectively. The isolated flavonolignans (1-7) inhibited both monophenolase (IC50 = 1.7-7.6 µM) and diphenolase (IC50 = 12.1-44.9 µM) of tyrosinase significantly. Their inhibitions were 10-fold effective in comparison with their mother skeletons (8-10). Inhibitory functions were also proved by HPLC analysis using N-acetyl-l-tyrosine as substrate. The predominant formation of Emet·I was confirmed from a long prolongation of lag time and a decrease of the static state activity of the enzyme. All tested compounds had a significant binding affinity to tyrosinase with KSV values of 0.06-0.27 × 104 L·mol-1, which are well correlated with IC50s. In kinetic study, all flavonolignan (1-7) were mixed type I (KI < KIS) inhibitors, whereas their mother skeletons (8-10) were competitive ones. The UPLC-ESI-TOF/MS analysis showed that the isolated inhibitors are the most abundant metabolites in the target plant.


Assuntos
Flavonoides/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Silybum marianum/química , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/química , Cinética , Silybum marianum/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Oxirredução , Extratos Vegetais/química , Sementes/química , Sementes/metabolismo , Silimarina/análogos & derivados , Silimarina/análise , Silimarina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tirosina/química , Tirosina/metabolismo
10.
Int J Biol Macromol ; 128: 149-157, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682484

RESUMO

The chromenone derivatives (1-4) from the root part of Flemingia philippinensis showed a significant inhibition against bacterial neuraminidase (NA) which plays a pivotal role in a cellular interaction including pathogenesis of bacterial infection and subsequent inflammation. The compounds 1 and 2 were the new compounds, philippin D (1) and philippin E (2). In particular, compounds (1-3) exhibited sub micromolar levels of IC50 values with 0.75, 0.54, and 0.07 µM. This is the first report that chromenone skeleton emerged as a lead structure of bacterial NA inhibition. In kinetic study, 8,8-diprenyl compounds displayed competitive inhibitory mode, whereas 4a,8-diprenyl ones showed noncompetitive behavior. It was manifested that all competitive inhibitors (1 and 2) were simple reversible slow-binding against bacterial NA. The binding affinities (KSV) of inhibitors to enzyme were agreement with their respective inhibitory potencies. Molecular docking data confirmed that the position of 3-methyl-2-butenyl substituent affects inhibitory mechanism against CpNanI. The tri-arginyl cluster of R266, R555, and R615 and D291 in NanI tightly interact with the competitive inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fabaceae/química , Neuraminidase/antagonistas & inibidores , Sítios de Ligação , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Raízes de Plantas/química , Ligação Proteica , Relação Estrutura-Atividade
11.
Molecules ; 24(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654565

RESUMO

In this study, the inhibitory potential of bacterial neuraminidase (NA) was observed on the leaves of Epimedium koreanum Nakai, which is a popular ingredient in traditional herbal medicine. This study attempted to isolate the relevant, responsible metabolites and elucidate their inhibition mechanism. The methanol extraction process yielded eight flavonoids (1⁻8), of which compounds 7 and 8 were new compounds named koreanoside F and koreanoside G, respectively. All the compounds (1⁻8) showed a significant inhibition to bacterial NA with IC50 values of 0.17⁻106.3 µM. In particular, the prenyl group on the flavonoids played a critical role in bacterial NA inhibition. Epimedokoreanin B (compound 1, IC50 = 0.17 µM) with two prenyl groups on C8 and C5' of luteolin was 500 times more effective than luteolin (IC50 = 85.6 µM). A similar trend was observed on compound 2 (IC50 = 0.68 µM) versus dihydrokaempferol (IC50 = 500.4 µM) and compound 3 (IC50 = 12.6 µM) versus apigenin (IC50 = 107.5 µM). Kinetic parameters (Km, Vmax, and Kik/Kiv) evaluated that all the compounds apart from compound 5 showed noncompetitive inhibition. Compound 5 was proven to be a mixed type inhibitor. In an enzyme binding affinity experiment using fluorescence, affinity constants (KSV) were tightly related to inhibitory activities.


Assuntos
Inibidores Enzimáticos/farmacologia , Epimedium/química , Flavonoides/farmacologia , Neuraminidase/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Flavonoides/química , Concentração Inibidora 50 , Estrutura Molecular , Neopreno/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química
12.
Molecules ; 23(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614846

RESUMO

F. philippinensis Merr. et Rolfe has been cultivated on a large scale and is widely consumed by local inhabitants as an important nutraceutical, especially against rheumatism which has a deep connection with antioxidants. In this study, a total of 18 different phenolic metabolite compounds in F. philippinensis were isolated and identified, and evaluated for their antioxidant and DNA damage protection potential. The antioxidant activity of the 18 identified compounds was screened using DPPH, ORAC, hydroxyl and superoxide radical scavenging assays. The antioxidant potential of the compounds was found to differ by functionality and skeleton. However, most compounds showed a good antioxidant potential. In particular, seven of the identified compounds, namely, compounds 2, 3, 6, 10, 11, 15 and 16, showed significant protective effects on pBR322 plasmid DNA against the mutagenic and toxic effects of Fenton's reaction. The most active compound, compound 2, displayed a dose-dependent DNA damage protection potential in the range of 7.5~60.0 µM. The DNA damage protective effect of the identified compounds was significantly correlated with the hydroxyl radical scavenging activity. Compounds that exhibited effective (IC50 = 5.4~12.5 µg/mL) hydroxyl radical scavenging activity were found to be the ones with higher DNA damage protection potential.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Fabaceae/química , Fenóis/química , Fenóis/farmacologia , Dano ao DNA/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...