Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 43(5): 1419-24, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19350913

RESUMO

Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel trucks driving through a 1-km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO2 concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for approximately 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg(-1) and maximum values of approximately 10 g kg(-1). Corresponding values for PN emission factors were 4.7 x 10(15) and 4 x 10(16) # kg(-1). There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1sigma) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from +/- 43% for n=10 to +/- 8% for n=300, illustrating the importance of vehicle sample sizes in emissions studies. When n=10, sample means are more likely to be biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in the future, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet will become more of a challenge.


Assuntos
Automóveis , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise , California , Dióxido de Carbono/análise , Simulação por Computador , Modelos Químicos , Tamanho da Amostra , Estações do Ano , Incerteza
2.
Environ Sci Technol ; 42(11): 3944-50, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18589949

RESUMO

Carbonyls can be toxic and highly reactive in the atmosphere. To quantify trends in carbonyl emissions from light-duty (LD) vehicles, measurements were made in a San Francisco Bay area highwaytunnel bore containing essentially all LD vehicles during the summers of 1999, 2001, and 2006. The LD vehicle emission factor for formaldehyde, the most abundant carbonyl, did not change between 1999 and 2001, then decreased by 61 +/- 7% between 2001 and 2006. This reduction was due to fleet turnover and the removal of MTBE from gasoline. Acetaldehyde emissions decreased by 19 +/- 2% between 1999 and 2001 and by the same amount between 2001 and 2006. Absent the increased use of ethanol in gasoline after 2003, acetaldehyde emissions would have further decreased by 2006. Carbonyl emission factors for medium- (MD) and heavy-duty (HD) diesel trucks were measured in 2006 in a separate mixed-traffic bore of the tunnel. Emission factors for diesel trucks were higher than those for LD vehicles for all reported carbonyls. Diesel engine exhaust dominates over gasoline engines as a direct source of carbonyl emissions in California. Carbonyl concentrations were also measured in liquid-gasoline samples and were found to be low (< 20 ppm). The gasoline brands that contained ethanol showed higher concentrations of acetaldehyde in unburned fuel versus gasoline that was formulated without ethanol. Measurements of NO2 showed a yearly rate of decrease for LD vehicle emissions similar to that of total NOx in this study. The observed NO2/NOx ratio was 1.2 +/- 0.3% and 3.7 +/- 0.3% for LD vehicles and diesel trucks, respectively.


Assuntos
Poluentes Atmosféricos/análise , Aldeídos/análise , Cetonas/análise , Veículos Automotores , Dióxido de Nitrogênio/análise , California , Monitoramento Ambiental , Gasolina
3.
Anat Rec (Hoboken) ; 291(4): 379-89, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18228585

RESUMO

A flexible mathematical model of an asymmetric bronchial airway bifurcation is presented. The bifurcation structure is automatically determined after the user specifies geometric parameters: radius of parent airway, radii of daughter airways, radii of curvature of the daughter branch toroids, bifurcation angles, and radius of curvature of carina ridge. Detailed shape in the region where the three airways merge is defined by several explicit functions and can be changed with ease in accordance with observed lung structure. These functions take into account the blunt shape of the carina, the smooth transition from the outer transition zone to the inner one, and the shift in carinal ridge starting position as a function of bifurcation asymmetry. We validated the bifurcation model by comparing it to a computed tomography image of a rat lung cast. Three-dimensional representations of the bifurcation geometry can be viewed at http://mae.ucdavis.edu/wexler/lungs/bifurc.htm.


Assuntos
Resistência das Vias Respiratórias , Brônquios/anatomia & histologia , Modelos Anatômicos , Mecânica Respiratória , Algoritmos , Animais , Broncografia , Humanos , Ratos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...