Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(14): 6316-6327, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38957960

RESUMO

Experimental NMR spectroscopy and theoretical molecular dynamics (MD) simulations provide complementary insights into protein conformational dynamics and hence into biological function. The present work describes an extensive set of backbone NH and side-chain methyl group generalized order parameters for the Escherichia coli ribonuclease HI (RNH) enzyme derived from 2-µs microsecond MD simulations using the OPLS4 and AMBER-FF19SB force fields. The simulated generalized order parameters are compared with values derived from NMR 15N and 13CH2D spin relaxation measurements. The squares of the generalized order parameters, S2 for the N-H bond vector and Saxis2 for the methyl group symmetry axis, characterize the equilibrium distribution of vector orientations in a molecular frame of reference. Optimal agreement between simulated and experimental results was obtained by averaging S2 or Saxis2 calculated by dividing the simulated trajectories into 50 ns blocks (∼five times the rotational diffusion correlation time for RNH). With this procedure, the median absolute deviations (MAD) between experimental and simulated values of S2 and Saxis2 are 0.030 (NH) and 0.061 (CH3) for OPLS4 and 0.041 (NH) and 0.078 (CH3) for AMBER-FF19SB. The MAD between OPLS4 and AMBER-FF19SB are 0.021 (NH) and 0.072 (CH3). The generalized order parameters for the methyl group symmetry axis can be decomposed into contributions from backbone fluctuations, between-rotamer dihedral angle transitions, and within-rotamer dihedral angle fluctuations. Analysis of the simulation trajectories shows that (i) backbone and side chain conformational fluctuations exhibit little correlation and that (ii) fluctuations within rotamers are limited and highly uniform with values that depend on the number of dihedral angles considered. Low values of Saxis2, indicative of enhanced side-chain flexibility, result from between-rotamer transitions that can be enhanced by increased local backbone flexibility.


Assuntos
Escherichia coli , Simulação de Dinâmica Molecular , Ribonuclease H , Ribonuclease H/química , Ribonuclease H/metabolismo , Escherichia coli/química , Escherichia coli/enzimologia , Conformação Proteica , Ressonância Magnética Nuclear Biomolecular
2.
Protein Sci ; 33(3): e4898, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358135

RESUMO

Structural genomics consortia established that protein crystallization is the primary obstacle to structure determination using x-ray crystallography. We previously demonstrated that crystallization propensity is systematically related to primary sequence, and we subsequently performed computational analyses showing that arginine is the most overrepresented amino acid in crystal-packing interfaces in the Protein Data Bank. Given the similar physicochemical characteristics of arginine and lysine, we hypothesized that multiple lysine-to-arginine (KR) substitutions should improve crystallization. To test this hypothesis, we developed software that ranks lysine sites in a target protein based on the redundancy-corrected KR substitution frequency in homologs. This software can be run interactively on the worldwide web at https://www.pxengineering.org/. We demonstrate that three unrelated single-domain proteins can tolerate 5-11 KR substitutions with at most minor destabilization, and, for two of these three proteins, the construct with the largest number of KR substitutions exhibits significantly enhanced crystallization propensity. This approach rapidly produced a 1.9 Å crystal structure of a human protein domain refractory to crystallization with its native sequence. Structures from Bulk KR-substituted domains show the engineered arginine residues frequently make hydrogen-bonds across crystal-packing interfaces. We thus demonstrate that Bulk KR substitution represents a rational and efficient method for probabilistic engineering of protein surface properties to improve crystallization.


Assuntos
Lisina , Proteínas , Humanos , Lisina/química , Cristalização , Proteínas/genética , Aminoácidos/química , Cristalografia por Raios X , Arginina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...