Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(32): 36771-36780, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929399

RESUMO

Nanoscale polycrystalline thin-film heterostructures are central to microelectronics, for example, metals used as interconnects and high-K oxides used in dynamic random-access memories (DRAMs). The polycrystalline microstructure and overall functional response therein are often dominated by the underlying substrate or layer, which, however, is poorly understood due to the difficulty of characterizing microstructural correlations at a statistically meaningful scale. Here, an automated, high-throughput method, based on the nanobeam electron diffraction technique, is introduced to investigate orientational relations and correlations between crystallinity of materials in polycrystalline heterostructures over a length scale of microns, containing several hundred individual grains. This technique is employed to perform an atomic-scale investigation of the prevalent near-coincident site epitaxy in nanocrystalline ZrO2 heterostructures, the workhorse system in DRAM technology. The power of this analysis is demonstrated by answering a puzzling question: why does polycrystalline ZrO2 transform dramatically from being antiferroelectric on polycrystalline TiN/Si to ferroelectric on amorphous SiO2/Si?

2.
Proc Natl Acad Sci U S A ; 119(28): e2206521119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35763566

RESUMO

We have developed a DNA aptamer-conjugated graphene field-effect transistor (GFET) biosensor platform to detect receptor-binding domain (RBD), nucleocapsid (N), and spike (S) proteins, as well as viral particles of original Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus and its variants in saliva samples. The GFET biosensor is a label-free, rapid (≤20 min), ultrasensitive handheld wireless readout device. The limit of detection (LoD) and the limit of quantitation (LoQ) of the sensor are 1.28 and 3.89 plaque-forming units (PFU)/mL for S protein and 1.45 and 4.39 PFU/mL for N protein, respectively. Cognate spike proteins of major variants of concern (N501Y, D614G, Y453F, Omicron-B1.1.529) showed sensor response ≥40 mV from the control (aptamer alone) for fM to nM concentration range. The sensor response was significantly lower for viral particles and cognate proteins of Middle East Respiratory Syndrome (MERS) compared to SARS-CoV-2, indicating the specificity of the diagnostic platform for SARS-CoV-2 vs. MERS viral proteins. During the early phase of the pandemic, the GFET sensor response agreed with RT-PCR data for oral human samples, as determined by the negative percent agreement (NPA) and positive percent agreement (PPA). During the recent Delta/Omicron wave, the GFET sensor also reliably distinguished positive and negative clinical saliva samples. Although the sensitivity is lower during the later pandemic phase, the GFET-defined positivity rate is in statistically close alignment with the epidemiological population-scale data. Thus, the aptamer-based GFET biosensor has a high level of precision in clinically and epidemiologically significant SARS-CoV-2 variant detection. This universal pathogen-sensing platform is amenable for a broad range of public health applications and real-time environmental monitoring.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , SARS-CoV-2 , Tecnologia sem Fio , COVID-19/diagnóstico , Humanos , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Autoteste
3.
Nanotechnology ; 20(1): 015303, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19417248

RESUMO

We report on the size-dependent transformation and geometrical modifications of periodically patterned Si templates by a combination of dry oxidation and chemical etching. Deep ultraviolet lithography patterned circular holes with diameters varying between 190 nm and 1 microm on Si wafers were oxidized at 1000 degrees C using dry oxygen for various durations, with selected samples chemically etched for oxide removal for additional alterations. An interesting phenomenon of a circular-to-square shape transformation of the holes was observed, which was particularly pronounced in the sub-200 nm regime. We tentatively attribute the change to the surface energy and geometry constraints in nanoscale patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...