Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(25): e202303151, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37058317

RESUMO

Heteroleptic molybdenum complexes bearing 1,5-diaza-3,7-diphosphacyclooctane (P2 N2 ) and non-innocent dithiolene ligands were synthesized and electrochemically characterized. The reduction potentials of the complexes were found to be fine-tuned by a synergistic effect identified by DFT calculations as ligand-ligand cooperativity via non-covalent interactions. This finding is supported by electrochemical studies combined with UV/Vis spectroscopy and temperature-dependent NMR spectroscopy. The observed behavior is reminiscent of enzymatic redox modulation using second ligand sphere effects.


Assuntos
Molibdênio , Molibdênio/química , Ligantes , Oxirredução , Espectroscopia de Ressonância Magnética , Temperatura
2.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838526

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzed the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. While in the reaction of formate oxidation, the product is CO2, which exits the active site via a hydrophobic channel; bicarbonate is formed as the first intermediate during the reaction at the active site. Other than what has been previously reported, bicarbonate is formed after an oxygen atom transfer reaction, transferring the oxygen from water to formate and a subsequent proton-coupled electron transfer or hydride transfer reaction involving the sulfido ligand as acceptor.


Assuntos
Bicarbonatos , Formiato Desidrogenases , Formiato Desidrogenases/metabolismo , Oxigênio , Oxirredução , Molibdênio/química , Formiatos , Dióxido de Carbono/química
3.
Molecules ; 29(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38202800

RESUMO

Seven new 1,2,3,4,5-pentathiepino[6,7-a]indolizines were synthesized in which the pentathiepine moieties bear an indolizine backbone that is derivatized from C-H to F-, Cl-, Br-, I-, NO2-, and CH3-substitutions, respectively, in a meta position relative to the aza group on the pyridine moiety. Their preparation took place via two common steps: (i) a Sonogashira coupling between (4-substituted) 2-bromo- or 2-chloropyridines and propynyl 3,3-diethylacetal, and (ii) a ring closing reaction mediated by a molybdenum oxo-bistetrasulfido complex and elemental sulfur. The latter simultaneously facilitates the 1,2,3,4,5-pentathiepino chain/ring- and indolizine ring-formations. The fluoro derivative was addressed with 2-bromo-5-aminopyridine as the starting material via a Sandmeyer reaction. The iodo derivative was obtained from 5-bromo-2-alkynylpiridine using a metal-assisted variation of the Finkelstein reaction. The requirement to explore different reaction conditions and the varied respective yields of the final products are discussed. The influence of the distinct substitutions on the pyridine moieties, their electronic structures, and respective chemical properties was investigated through a set of spectroscopic/analytical characterizations. Intriguingly, in all cases, the nitro-substituted derivative exhibited a distinct behavior compared to the six other investigated derivatives, which was also addressed computationally. All seven new pentathiepines were crystallized, and their respective molecular structures were determined using single crystal X-ray diffraction. These structures are compared and discussed as are their respective packing patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...