Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37960679

RESUMO

Despite constant technological innovation, road transport remains a significant source of pollutant emissions, and effective driver-behaviour changes can be considered as solutions that can increase the sustainability of road traffic in a short period. Thus, understanding driver behaviour plays a key role in assessing traffic-related impacts. Since real-world experiments entail some risks and are often not flexible, simulator-based experiments can be relevant to studying vehicle dynamics and driver behaviour. However, the reliability of the simulation results' accuracy must be ensured. The primary objective of this paper is to present an exploratory analysis focused on the study of the reliability of a driving simulator to reproduce driving parameters that can then be used for emission estimation. For that purpose, tests were conducted by two drivers for urban and highway scenarios performed on a driving simulator and in real-world environments. Different road singularities composed events that were microscopically analysed. Second-by-second vehicle dynamic variables were recorded, and the pollutant emissions were estimated using the vehicle specific power (VSP) methodology. The results of this exploratory validation analysis showed that the total average emissions of all events were not significantly different (958.39 g for simulated and 998.06 g for empirical tests). Overall, the driving simulator can replicate vehicle dynamics from a microscopic perspective, especially for the urban scenario. This may be due to the more complex traffic conditions and road specificities that require more restrained driving behaviour. Nevertheless, VSP mode distributions did not follow the same pattern in 4 out of 10 events, meaning that the drivers displayed different behaviours in the simulated and empirical tests for those events. The relative errors range between 4 and 29% for carbon dioxide emissions and between 2 and 33% for nitrogen oxides emissions.

2.
Sci Total Environ ; 470-471: 127-37, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24126133

RESUMO

The accuracy and precision of air quality models are usually associated with the emission inventories. Thus, in order to assess if there are any improvements on air quality regional simulations using detailed methodology of road traffic emission estimation, a regional air quality modelling system was applied. For this purpose, a combination of top-down and bottom-up approaches was used to build an emission inventory. To estimate the road traffic emissions, the bottom-up approach was applied using an instantaneous emission model (Vehicle Specific Power - VSP methodology), and an average emission model (CORINAIR methodology), while for the remaining activity sectors the top-down approach was used. Weather Research and Forecasting (WRF) and Comprehensive Air quality (CAMx) models were selected to assess two emission scenarios: (i) scenario 1, which includes the emissions from the top-down approach; and (ii) scenario 2, which includes the emissions resulting from integration of top-down and bottom-up approaches. The results show higher emission values for PM10, NOx and HC, for scenario 1, and an inverse behaviour to CO. The highest differences between these scenarios were observed for PM10 and HC, about 55% and 75% higher (respectively for each pollutant) than emissions provided by scenario 2. This scenario gives better results for PM10, CO and O3. For NO2 concentrations better results were obtained with scenario 1. Thus, the results obtained suggest that with the combination of the top-down and bottom-up approaches to emission estimation several improvements in the air quality results can be achieved, mainly for PM10, CO and O3.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Modelos Químicos , Emissões de Veículos/análise , Análise de Regressão , Estações do Ano
3.
Sci Total Environ ; 409(6): 1154-63, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21216441

RESUMO

The main objective of this work was to evaluate the impact of urban development trends in mobility patterns of a medium sized Portuguese city and air quality consequences, using a sequential modeling process, comprising i) land use and transportation, TRANUS model; ii) road traffic air pollutants emissions, TREM model and; iii) air quality, TAPM model. This integrated methodology was applied to a medium sized Portuguese city. In order to evaluate the implementation of the methodology, a preliminary study was performed, which consisted on the comparison of modeled mobility patterns and CO and PM(10) concentrations with measured data used in the definition of the current scenario. The comparison between modeled and monitored mobility patterns at the morning peak hour for a weekday showed an RMSE of 31%. Regarding CO concentrations, an underestimation of the modeled results was observed. Nevertheless, the modeled PM(10) concentrations were consistent with the monitored data. Overall, the results showed a reasonable consistency of the modeled data, which allowed the use of the integrated modeling system for the study scenarios. The future scenarios consisted on the definition of different mobility patterns and vehicle technology characteristics, according to two main developing trends: (1) "car pooling" scenario, which imposes a mean occupancy rate of 3 passengers by vehicle and (2) the "Euro 6" scenario, which establishes that all vehicles accomplish at least the Euro 6 standard technology. Reductions of 54% and 83% for CO, 44% and 95% for PM(10), 44% and 87% for VOC and 44% and 79% for NO(x) emissions were observed in scenarios 1 and 2, respectively. Concerning air quality, a reduction of about 100 µg m(-3) of CO annual average concentration was observed in both scenarios. The results of PM(10) annual concentrations showed a reduction of 1.35 µg m(-3) and 2.7 µg m(-3) for scenarios 1 and 2 respectively.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Monóxido de Carbono/análise , Cidades/estatística & dados numéricos , Modelos Químicos , Material Particulado/análise , Portugal , Meios de Transporte/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA