Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36129174

RESUMO

Motherhood induces a drastic, sometimes long-lasting, change in internal state and behavior in many female animals. How a change in reproductive state or the discrete event of mating modulates specific female behaviors is still incompletely understood. Using calcium imaging of the whole brain of Drosophila females, we find that mating does not induce a global change in brain activity. Instead, mating modulates the pheromone response of dopaminergic neurons innervating the fly's learning and memory center, the mushroom body (MB). Using the mating-induced increased attraction to the odor of important nutrients, polyamines, we show that disruption of the female fly's ability to smell, for instance the pheromone cVA, during mating leads to a reduction in polyamine preference for days later indicating that the odor environment at mating lastingly influences female perception and choice behavior. Moreover, dopaminergic neurons including innervation of the ß'1 compartment are sufficient to induce the lasting behavioral increase in polyamine preference. We further show that MB output neurons (MBON) of the ß'1 compartment are activated by pheromone odor and their activity during mating bidirectionally modulates preference behavior in mated and virgin females. Their activity is not required, however, for the expression of polyamine attraction. Instead, inhibition of another type of MBON innervating the ß'2 compartment enables expression of high odor attraction. In addition, the response of a lateral horn (LH) neuron, AD1b2, which output is required for the expression of polyamine attraction, shows a modulated polyamine response after mating. Taken together, our data in the fly suggests that mating-related sensory experience regulates female odor perception and expression of choice behavior through a dopamine-gated learning circuit.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cálcio , Dopamina , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Corpos Pedunculados/fisiologia , Odorantes , Feromônios , Poliaminas , Olfato/fisiologia
2.
J Vis Exp ; (170)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33999022

RESUMO

We present a method developed specifically to image the whole Drosophila brain during ongoing behavior such as walking. Head fixation and dissection are optimized to minimize their impact on behavior. This is first achieved by using a holder that minimizes movement hindrances. The back of the fly's head is glued to this holder at an angle that allows optical access to the whole brain while retaining the fly's ability to walk, groom, smell, taste and see. The back of the head is dissected to remove tissues in the optical path and muscles responsible for head movement artefacts. The fly brain can subsequently be imaged to record brain activity, for instance using calcium or voltage indicators, during specific behaviors such as walking or grooming, and in response to different stimuli. Once the challenging dissection, which requires considerable practice, has been mastered, this technique allows to record rich data sets relating whole brain activity to behavior and stimulus responses.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Drosophila melanogaster/patogenicidade , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...