Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 207(3): 935-947, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28942426

RESUMO

Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty (hd), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms.


Assuntos
Replicação do DNA , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Herança Materna , Proteínas Nucleares/genética , Animais , Instabilidade Cromossômica , Drosophila , Proteínas de Drosophila/metabolismo , Feminino , Homozigoto , Masculino , Meiose , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Ovário/metabolismo
2.
Nat Commun ; 8: 15125, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28485389

RESUMO

Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epitélio/fisiologia , Receptores ErbB/metabolismo , Intestinos/citologia , Receptores de Peptídeos de Invertebrados/metabolismo , Regeneração , Serina-Treonina Quinases TOR/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Clonais , Endorreduplicação , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Homeostase , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Ploidias , Transdução de Sinais , Transcrição Gênica , Regulação para Cima/genética , Proteínas ras/metabolismo
3.
PLoS Genet ; 9(9): e1003835, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086162

RESUMO

The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição E2F/metabolismo , Proteínas de Choque Térmico/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila melanogaster/genética , Fatores de Transcrição E2F/genética , Proteínas de Choque Térmico/metabolismo , Mitose/genética , Fatores de Transcrição , Complexos Ubiquitina-Proteína Ligase/genética
4.
Dev Cell ; 14(3): 315-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18331708

RESUMO

The Hippo (Hpo) signaling pathway limits organ growth in organisms from Drosophila to mammals by suppressing the activity of the transcriptional coactivator Yorkie (Yki)/YAP. The TEAD/TEF factor Scalloped (Sd) has been identified as the first known transcription factor to partner with Yki as a downstream target of Hpo signaling.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas Nucleares/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Modelos Biológicos , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais , Proteínas de Sinalização YAP
5.
Curr Biol ; 15(8): 755-9, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15854909

RESUMO

The full complement of proteins required for the proper regulation of genome duplication are yet to be described. We employ a genetic DNA-replication model system based on developmental amplification of Drosophila eggshell (chorion) genes [1]. Hypomorphic mutations in essential DNA replication genes result in a distinct thin-eggshell phenotype owing to reduced amplification [2]. Here, we molecularly identify the gene, which we have named humpty dumpty (hd), corresponding to the thin-eggshell mutant fs(3)272-9 [3]. We confirm that hd is essential for DNA amplification in the ovary and show that it also is required for cell proliferation during development. Mosaic analysis of hd mutant cells during development and RNAi in Kc cells reveal that depletion of Hd protein results in severe defects in genomic replication and DNA damage. Most Hd protein is found in nuclear foci, and some may traverse the nuclear envelope. Consistent with a role in DNA replication, expression of Hd protein peaks during late G1 and S phase, and it responds to the E2F1/Dp transcription factor. Hd protein sequence is conserved from plants to humans, and published microarrays indicate that expression of its putative human ortholog also peaks at G1/S [4]. Our data suggest that hd defines a new gene family likely required for cell proliferation in all multicellular eukaryotes.


Assuntos
Proliferação de Células , Córion/citologia , Replicação do DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Southern Blotting , Encéfalo/metabolismo , Células Cultivadas , Clonagem Molecular , Primers do DNA , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Feminino , Citometria de Fluxo , Microscopia de Fluorescência , Dados de Sequência Molecular , Família Multigênica/genética , Ovário/metabolismo , Interferência de RNA , Alinhamento de Sequência , Análise de Sequência de DNA , Transgenes/genética
6.
Cancer Biol Ther ; 1(1): 8-13, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12170768

RESUMO

It is critical to discover the mechanisms of normal cell cycle regulation if we are to fully understand what goes awry in cancer cells. The normal eukaryotic cell tightly regulates the activity of origins of DNA replication so that the genome is duplicated exactly once per cell cycle. Over the last ten years much has been learned concerning the cell cycle regulation of origin activity. It is now clear that the proteins and cell cycle mechanisms that control origin activity are largely conserved from yeast to humans. Despite this conservation, the composition of origins of DNA replication in higher eukaryotes remains ill defined. A DNA consensus for predicting origins has yet to emerge, and it is of some debate whether primary DNA sequence determines where replication initiates. In this review we outline what is known about origin structure and the mechanism of once per cell cycle DNA replication with an emphasis on recent advances in mammalian cells. We discuss the possible relevance of these regulatory pathways for cancer biology and therapy.


Assuntos
Replicação do DNA , Células Eucarióticas/citologia , Duplicação Gênica , Genoma , Neoplasias/genética , Fase S/genética , Animais , Proteínas de Ciclo Celular/fisiologia , DNA Fúngico/biossíntese , DNA Fúngico/genética , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , Células Eucarióticas/metabolismo , Proteínas Fúngicas/fisiologia , Humanos , Proteínas de Insetos/fisiologia , Substâncias Macromoleculares , Mamíferos/genética , Modelos Genéticos , Origem de Replicação , Leveduras/genética
7.
Hum Mol Genet ; 11(5): 525-34, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11875047

RESUMO

Tuberous sclerosis (TSC) is a autosomal dominant genetic disorder caused by mutations in either TSC1 or TSC2, and characterized by benign hamartoma growth. We developed a murine model of Tsc1 disease by gene targeting. Tsc1 null embryos die at mid-gestation from a failure of liver development. Tsc1 heterozygotes develop kidney cystadenomas and liver hemangiomas at high frequency, but the incidence of kidney tumors is somewhat lower than in Tsc2 heterozygote mice. Liver hemangiomas were more common, more severe and caused higher mortality in female than in male Tsc1 heterozygotes. Tsc1 null embryo fibroblast lines have persistent phosphorylation of the p70S6K (S6K) and its substrate S6, that is sensitive to treatment with rapamycin, indicating constitutive activation of the mTOR-S6K pathway due to loss of the Tsc1 protein, hamartin. Hyperphosphorylation of S6 is also seen in kidney tumors in the heterozygote mice, suggesting that inhibition of this pathway may have benefit in control of TSC hamartomas.


Assuntos
Hemangioma/genética , Hemangioma/mortalidade , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Proteínas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Células Cultivadas , Células Clonais , Cistadenoma/genética , Cistadenoma/patologia , Modelos Animais de Doenças , Feminino , Genes Supressores de Tumor , Genótipo , Mutação em Linhagem Germinativa , Hemangioma/patologia , Heterozigoto , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fenótipo , Fatores Sexuais , Células-Tronco , Taxa de Sobrevida , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...